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Abstract. Autism is increasing in prevalence and is a neurodevelopmen-
tal disorder characterised by impairments in communication skills and
social behaviour. Connectomes enable a systems-level representation of
the brain with recent interests in understanding the distributed nature
of higher order cognitive function using modules or subnetworks. By
dividing the connectome according to a central component of the brain
critical for its function (it’s hub), we investigate network organisation
in autism from hub through to peripheral subnetworks. We complement
this analysis by extracting features of energy transport computed from
heat kernels fitted with increasing time steps. This heat kernel frame-
work is advantageous as it can capture the energy transported in all
direct and indirect pathways between pair-wise regions over ’time’, with
features that have correspondence to small-world properties. We apply
our framework to resting-state functional MRI connectomes from a large,
publically available autism dataset, ABIDE. We show that energy prop-
agating through the brain over time are different between subnetworks,
and that heat kernel features significantly differ between autism and
controls. Furthermore, the hub was functionally preserved and similar
to controls, however, increasing statistical significance between groups
was found in increasingly peripheral subnetworks. Our results support
the increasing opinion of non-hub regions playing an important role in
functional organisation. This work shows that analysing autism by sub-
networks with the heat kernel reflects the atypical activations in periph-
eral regions as alterations in energy dispersion and may provide useful
features towards understanding the distributed impact of this disorder
on the functional connectome.
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1 Introduction

Autism spectrum disorder is a neurodevelopmental condition estimated to affect
1 in 59 children in the US [2]. It is characterised by atypical social behaviour
and sensory processing, with deficits in high-level cognitive function and mental
flexibility [16,22]. It has also been increasingly suggested that the neural bases
of autism may not be explained by specific regions, but by aberrant connectivity
within and between functional modules [16,19].

Thus strategies to interrogate brain connectivity in autism have evolved from
specific tract analysis to connectomes. This connectome approach recognises
the distributed nature of higher order cognitive functions. Recent approaches
have been to identify modules or subsets of regions that are most critical for
efficient network function [18,26,27] and which exhibit specialisation for spe-
cific processes [11]. For one such approach, inter-connected brain regions of
high functional or structural connectivity are considered to form a collection
of core “hubs”, a subnetwork that is essential for efficient cognitive function.
Such hubs are the first to develop and present at birth, with strong similarity
to adults [12,14]. Other regions that form later during development around the
hubs constitute the “feeder” and “seeder” subnetworks [15,24]. Grouping con-
nections into subnetworks allows interrogation of the relative importance of each
subnetwork in characterising a disorder, such as autism, providing information
on changes in the fundamental core of a network compared to secondary mal-
adaptive changes that potentially give rise to cognitive dysfunction [3,4,28,30].

Studies using subnetworks often compare measures of density or connectiv-
ity strength [8,30], or traditional network metrics [3,24]. With brain function
potentially being supported by coordinated activity between different functional
modules, recent methods have sought to capture these dynamic processes [13,16].
Here, we propose to use heat kernels, a diffusion model, on resting-state func-
tional MRI (rs-fMRI) data to extract features of energy transport [5,6]. The heat
kernel describes the effect of applying a heat source to a network and observ-
ing the diffusion process over ’time’. It encodes the distribution of energy over
a network and characterises the underlying structure of the graph [7,31]. Heat
kernels have been applied to connectomes to investigate atrophy patterns in
Alzheimer’s [21], mappings between functional and structural connectomes [1]
and for predicting motor outcome in preterm infants [6].

In this work, we present an edge-centric analysis where energy propagation
features are computed from rs-fMRI hub-stratified subnetworks. These heat ker-
nel features are then compared between a large, multi-centre cohort of autism
and control subjects. By combining a dynamic network model with hub analy-
sis, our aim is to better understand the vulnerability of and interplay between
subnetworks in autism.
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2 Materials and Methods

2.1 Subjects and rs-FMRI Data Preprocessing

We used rs-fMRI data from the Autism Brain Imaging Data Exchange (ABIDE)
initiative [10], comprising of typically-developing controls (n = 440) and subjects
with autism (n = 379). Data were preprocessed with the ABIDE Connectome
Computation System pipeline. In brief, preprocessing steps included: removal
of spikes, with slice timing and motion correction, removal of mean CSF and
white matter signals, and detrending of linear and quadratic drifts. Band-pass
temporal filtering (0.01–0.1 Hz) was applied after the above nuisance variable
regressions. The global mean signal was not regressed from the data. rs-fMRI
data were registered to the MNI template and signals averaged into regions
according to the AAL atlas. The pre-processed timeseries was demeaned, and a
covariance matrix [29] was computed for each subject. Omitting brainstem and
cerebellar regions resulted in a 90 × 90 connectivity matrix for each subject.

2.2 Group Connectomes, Hub Organisation and Subnetworks

Group Connectome. A group-averaged network was computed from only
the control population. The absolute of the connectivity matrix was taken and
thresholded to retain values greater than 0.05 to remove spurious associations.
A binarised, group-average adjacency matrix, Wgroup, was then computed by
retaining edges in at least 75% of the control group.

Hub Organisation and Defining Subnetworks. Hub regions were identi-
fied from Wgroup by selecting the top ten nodes with the greatest strength [8].
Network edges are then labelled into subnetworks based on their connection
to the hub nodes [24]: Hub subnetwork - Contains edges connecting two hub
nodes; Feeder subnetwork - are edges connecting hub to non-hub nodes; and
Seeder subnetwork - have edges connecting two non-hub nodes. We include a
fourth ‘Non-edge subnetwork’, comprising of the remaining entries in the net-
work which do not have an actual connection. These four subnetworks form the
’regions-of-interest’ to group the edge-based, heat kernel features for analysis.

2.3 Computing Heat Kernels and Their Features

The following computations are performed on a network W for each subject (in
both control and patient groups) found by multiplying their respective covariance
matrix with Wgroup.

Graph Notation. G = (V,E) where V is the set of |V | nodes on which a graph
is defined and E ⊆ V × V the corresponding set of edges. A subject’s weighted
matrix, W, is defined as W (u, v) = wuv where wuv is the corresponding edge
strength. A diagonal strength matrix, D, is defined as D(u, u) = deg(u) =∑

v∈V wuv . The Laplacian of G is L = D − W and the normalised Laplacian is
given by L̂ = D−1/2LD−1/2.
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Heat Kernel Features. The heat kernel, H(t), is the fundamental solution to
the standard, partial differential equation of a diffusion process,

∂H(t)
∂t

= −L̂H(t), (1)

and can be computed analytically,

H(t) = exp(−tL̂). (2)

H(t) describes the flow of energy through G at time t where the rate of flow
is governed by L̂ calculated from W . H(t) is a symmetric |V | times|V | matrix
where the entry Hu,v(t) represents the amount of heat transfer between nodes u
and v after time t.

Based on heat kernels computed from Eq. 2 for a range of t, several features
can be extracted for each entry in H to represent the dynamic properties of the
network [3]. One measure is the intrinsic time constant, tc, which is the time
when the relative change in heat transfer has dropped below a given percentage.
The tc(u, v) between nodes u and v for percentage threshold s is

tc(u, v) = tmax :
∣
∣
∣
∣
Hu,v(t + Δt) − Hu,v(t)

Hu,v(t)

∣
∣
∣
∣

t2

t1

< s, (3)

where Δt is a time step within the range of t1 ≤ t ≤ t2. The next set of measures
are the maximal energy passed between two regions (maximal value across all
heat kernels)

hpeak(u, v) = max |Hu,t(t)|t2t1 , (4)

and the time that hpeak occurs

tpeak(u, v) = t : hpeak(u, v). (5)

The last set of features represent the maximal difference in energy transferred
between two regions,

h′
peak(u, v) = max |Hu,v(t + Δt) − Hu,v(t)|t2t1 (6)

and the time that h′
peak occurs

t′peak(u, v) = t : h′
peak(u, v). (7)

2.4 Experimental Design

For each subject, 1500 heat kernels were computed from W for t =
[0.00, 0.01, . . . 15.0]. tc was calculated for a range of thresholds s = [2, 3, 4, 5%].
This results in a total of eight features for every edge in E. For each feature,
the mean is calculated from edges belonging to each subnetwork, yielding a final
32 measures for each subject (number of features × number of subnetworks).
Group differences of these 32 measures are tested for using independent t-tests.
Multiple comparisons was accounted for with a Bonferroni corrected significance
threshold of p < 0.05/32 = 0.00156.
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3 Results

Table 1 is an overview of subject demographics. Ages were not significantly dif-
ferent between groups (independent t-test, p = 0.61).

Table 1. Demographics of subjects from ABIDE

Heading level Controls Patients

Number of subjects 440 379

Age (years, mean ± std) 16.27 ± 6.74 16.53 ± 7.54

Age (years, range) 6.47–56.2 7.0–58.0

Regions identified as hub nodes are listed in Table 2. These regions were
predominantly deep grey matter structures and have found to be key hub regions
(e.g. insular, superior medial frontal, supramarginal gyrus) elsewhere [20,23].

Table 2. Identified hub regions in controls.

Regions

Superior medial frontal - Left

Insular - Left

Insular - Right

Putamen - Left

Putamen - Right

Supramarginal gyrus - Right

Rolandic operculum - Left

Rolandic operculum - Right

Figure 1 plots the amount of energy in heat kernels with time, averaged by
subnetwork, for each group. Specifically, it plots the heat kernel value, Hu,v(t),
averaged across all edges within a subnetwork, versus t. The slope and shape
of each curve varies depending on the subnetwork. The non-edge subnetwork
transports the least amount of energy over time, and the remaining subnetworks
all exhibit a peak where energy is maximal at different t. There is also a consistent
difference between groups over time after the peak - patients have lower heat
kernel values than controls in the hub and feeder subnetworks, and the reverse
can be observed in the seeder subnetwork.

Figure 2 plots each of the eight averaged heat kernel features, for all subnet-
works and groups, and Table 3 shows features’ mean (standard deviation) values
and statistical significance levels between groups. There are no significant group
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Fig. 1. Plots of mean values in the heat kernel matrix by subnetwork, with increasing
time for all subjects in each group. Shaded areas represent standard deviations.

differences for all measures in the hub subnetwork, however, the more periph-
eral the subnetwork is to the hub, the greater the number of significant group
differences, and the greater their statistical significance (Table 3). This is most
apparent in tc, irrespective of the threshold s used. Furthermore, the autism
group has greater tc than controls in all non-hub subnetworks. This trend can
be similarly seen for tpeak and t′peak.

4 Discussion

In this work, we presented an rs-fMRI subnetwork analysis comparing features
of energy propagation between autism and controls. More specifically, we investi-
gated how heat kernel derived measures differ between groups in the central func-
tional core of the brain and its peripheral subnetworks. We found no significant
difference in energy transport in hub regions between groups. However, periph-
eral subnetworks differed significantly, with important properties of change in
energy transport occurring at later time points in autism when compared to
controls.

Combining hub-stratified subnetwork analysis with the above heat kernel
framework is a complementary strategy to further our understanding of brain
topology. The strategic importance of hubs for information transport makes
them potentially vulnerable and thus sensitive to disease [9,18,26,28]. Whereas
alterations in the feeder and seeder subnetworks have been viewed as potential
secondary adaptations to disease or injury [3,4,30]. However, analysis treating
subnetworks as separate, standalone, entities with their own topology may be
unrealistic given the highly integrative nature of the brain. Heat kernels provide a
means to incorporate information from the entire network, even when computing
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Fig. 2. Boxplots of mean heat kernel features by subnetwork, for controls versus autism.
* denotes group differences at p < 0.05 and † for statistically significant group differ-
ences corrected for multiple comparisons at p < 0.00156.

edge-wise measures. This is because each element in H represents energy trans-
port through all possible pathways that connect any two regions. It is because
of this that the non-edge subnetwork possesses heat information, and has the
lowest heat kernel value. The non-edge subnetwork is also highly indicative of a
network’s capacity (its small world propensity) for efficient energy propagation
when using heat kernels [6], explaining the greatest significance between groups
of all subnetworks tested in our analysis.

This combined framework revealed a number of interesting findings. The lack
of significant group differences in the hub subnetwork suggests a relatively pre-
served functional core in autism. Subnetwork analysis in other pathologies have
identified core regions to remain similar to controls, whereas peripheral regions
demonstrated greater differences [3,30]. While it has been suggested that the
core is stable in order to support and allow peripheral regions greater flexibility
to meet functional demands [11], others have found atypical functional activation
in the core in the ABIDE cohort against controls [16,17]. Differences in reported
hub connectivity in autism may be attributed to not only the different method-
ologies used, but also because of the many ways to rate a node’s importance to
be labelled as a hub.
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Table 3. Mean (stdev) heat kernel features by subnetwork for Control and autism
groups. Statistically significant group differences are in bold denoted by ∗p < 0.05,
†p < 0.00156 (Bonferroni-corrected threshold), ‡p < 0.0001.

Feature Non-edge Hub Feeder Seeder

Control Autism Control Autism Control Autism Control Autism

tc, 2% 1.207 1.215‡ 0.417 0.418 0.43 0.436* 0.429 0.436†
(0.027) (0.029) (0.037) (0.035) (0.03) (0.036) 0.023 (0.026)

tc, 3% 0.864 0.869‡ 0.3 0.301 0.312 0.316* 0.313 0.317†
(0.019) (0.021) (0.026) (0.025) (0.022) (0.026) (0.016) (0.019)

tc, 4% 0.674 0.679‡ 0.235 0.235 0.245 0.248* 0.247 0.250†
(0.015) (0.016) (0.021) (0.02) (0.017) (0.02) (0.013) (0.015)

tc, 5% 0.554 0.558‡ 0.193 0.193 0.203 0.205* 0.204 0.207†
(0.012) (0.014) (0.017) (0.017) (0.014) (0.017) (0.01) (0.012)

hpeak 0.976 0.974 4.473 4.465 3.747 3.733 4.987 5.005*

(0.032) (0.03) (0.299) (0.303) (0.119) (0.107) (0.101) (0.099)

tpeak 12.84 12.856 3.213 3.159 3.333 3.36 2.679 2.760†
(0.133) (0.142) (0.63) (0.454) (0.547) (0.572) (0.339) (0.385)

h′
peak 0.235 0.235 5.988 5.985 5.729 5.733 8.629 8.641

(0.007) (0.007) (0.43) (0.424) (0.246) (0.248) (0.113) (0.108)

t′
peak 3.937 4.018† 0.067 0.069 0.142 0.157 0.155 0.175†

(0.294) (0.306) (0.119) (0.112) (0.099) (0.119) (0.079) (0.091)

In terms of peripheral subnetworks, the recruitment of more seeder regions
has been found in long, indirect functional pathways in autism than in con-
trols [16]. The authors suggest this may be indicative of diminished segregation
between core and peripheral subnetworks. It is thus interesting that the more
peripheral the subnetwork, the greater the statistical significance of our group
differences measured by heat kernel features. This result in non-hub regions was
also accompanied by greater values in autism than in controls for all time related
features. Suggesting that while heat kernel values have a similar profile in both
subject groups (Fig. 1), the extracted features quantifying properties of these
curves appear at a later t in autism. As it stands, we cannot ascertain what
these changes in the heat kernel features and their timings represent, but taken
all together, our results suggest greater involvement from peripheral, rather than
hub regions in autism.

There are limitations to our study, one of which is the broad age range
in the ABIDE dataset. It is important to understand the potential impact of
age on our results, particularly as the age range encompasses a period of great
neurodevelopmental change from childhood through to early adulthood. Another
is our use of node strength to identify hubs when a measure which includes
information on shortest path lengths such as betweenness centrality may be
more relevant, even though there is great overlap between hubs found using
both metrics on ABIDE data [17]. Future work will take these limitations into
consideration and incorporate other methods to determine nodal importance
[25,27].
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In this study, we present a novel analysis by combining two complementary
frameworks of energy propagation and subnetworks to investigate differences in
network efficiency in a large autism and control dataset. Overall, we identify
significant group differences in all peripheral subnetworks (feeder, seeder, non-
edge) and a preserved central hub in the autism group, further supporting the key
role that non-centralised regions play in brain functional organisation. How these
energy transport features in the peripheral subnetwork are related to cognitive
function and their association with clinical measures in autism remain to be
determined.
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