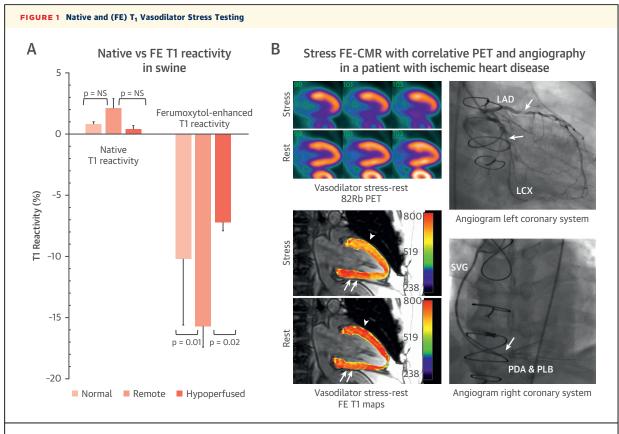
JACC: CARDIOVASCULAR IMAGING PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

A LETTER TO THE EDITOR

Ferumoxytol-Enhanced CMR for Vasodilator Stress Testing: A Feasibility Study

Researchers recently proposed using native myocardial T₁ mapping with vasodilator stress testing for evaluation of ischemic heart disease (IHD) (1). A change of 1.5% in native T1 between rest and peak stress was able to detect significant epicardial coronary stenosis (1). Although this approach is promising, the modest amplitude and narrow dynamic range for native T₁ reactivity (percentage of change in T₁ at peak vasodilation relative to baseline) may pose challenges in daily clinical practice. We propose to increase the amplitude and dynamic range of T₁ reactivity through the off-label use of ferumoxytol (Feraheme, AMAG Pharmaceuticals, Waltham, Massachusetts). Ferumoxytol is used for intravenous treatment of iron deficiency anemia, but it has superparamagnetic properties with high r₁ relaxivity and a long intravascular half-life. We posited that ferumoxytol would sensitize the myocardial T₁ to the vasodilator-induced dynamic differences between rest and peak stress and significantly boost the T1 reactivity. Because ferumoxytol shortens the T1, we expected the myocardial T1 to decrease during vasodilator stress because of the increased distribution space of ferumoxytol.

We studied Yorkshire swine (33 to 52 kg; n = 4normal, n = 3 coronary stenosis [80% to 90%]) and patients with IHD (n = 5; age 38 to 71 years). For animal studies, we created partial stenosis of the mid-left anterior descending artery using a transcatheter balloon angioplasty technique (2). The animal stress cardiac magnetic resonance (CMR) protocol included the following: 1) pre-ferumoxytol cine and T₁ mapping at rest and peak stress (4-min adenosine infusion [200 to 400 µg/kg/min]); 2) ferumoxytol (4 mg/kg) infusion; and 3) rest and stress ferumoxytol-enhanced (FE) T1 mapping. Five patients with positive (n = 3) or equivocal (n = 2)rubidium-82 positron emission tomography stress test results underwent regadenoson FE CMR. The FE CMR protocol included the following: 1) ferumoxytol (4 mg/kg infusion); and 2) multislice FE T_1 mapping at rest and stress (regadenoson 0.4 mg intravenously). We acquired T_1 maps in animal and human subjects using 5(3)3 balanced steady-state free precession (bSSFP) Modified Look-Locker Imaging (MOLLI) and used an in-house T_1 fitting algorithm to account for heart rate variation. Groups were compared using paired Student's *t*-tests. Values are reported as mean \pm SD.


There were no ferumoxytol-related or vasodilatorrelated adverse events. Mean post-ferumoxytol blood pool T₁ values at baseline and at peak vasodilation were similar (p = 0.5). Compared with native T_1 reactivity (Figure 1A), ferumoxytol amplified the T₁ reactivity by 12.8-fold in normal myocardium (native T₁ reactivity: 0.8 \pm 0.2%; FE T₁ reactivity: –10.2 \pm 5.4%; p < 0.01), 7.5-fold in remote myocardium (2.1 \pm 0.8% vs. -15.7±1.7%; p < 0.01), and 18-fold in vasodilator-induced hypoperfused myocardium (0.4 \pm 0.3% vs. –7.2 \pm 0.7%; p < 0.01). The effect size for FE T₁ reactivity was larger than native T₁ reactivity (6.5 [SD_{pooled} = 1.3] vs. 2.8 [SD_{pooled} = 0.6]). Compared with remote myocardium of patients with IHD, the FE T₁ reactivity values in hypoperfused segments were significantly blunted ($-8.8 \pm 1.9\%$ vs. $-3.2 \pm 15.9\%$; p < 0.01). Figure 1B illustrates the qualitative and quantitative potential of FE T₁ maps to depict hypoperfusion at rest and coronary steal physiology at peak vasodilation.

Our findings are hypothesis generating and support the early feasibility of FE CMR T1 vasodilator testing for detection of IHD. The higher amplitude and dynamic range achieved with ferumoxytol increased the effect size of FE T1 reactivity and improved its ability to differentiate between remote and hypoperfused myocardium. There are limitations, including the possibility of a blunted T₁ response from capillary leakage in the setting of ischemia. The use of ferumoxytol is also not without risks and needs to be weighed against the benefits. To date, however, ferumoxytol has demonstrated a positive safety profile for off-label diagnostic use under close monitoring (3). FE CMR T₁ reactivity testing has the potential to transform intramyocardial blood volume reserve quantification. Additional work is needed to systematically define its application for perfusion imaging.

Kim-Lien Nguyen, MD* Jiaxin Shao, PhD Vahid K. Ghodrati, MS Olujimi A. Ajijola, MD, PhD Rohan Dharmakumar, PhD J. Paul Finn, MD Peng Hu, PhD

ARTICLE IN PRESS

2

(A) Native and ferumoxytol-enhanced (FE) T_1 reactivity in normal, remote, and hypoperfused myocardium of swine models is shown. (B) Regadenoson stress rubidium-82 (⁸²Rb) positron emission tomography (PET) images from a patient with progressive angina show a large, reversible inferior wall perfusion defect. Ferumoxytol-enhanced cardiac magnetic resonance (CMR) T_1 map shows rest hypoperfusion in the inferior wall (arrows), which is visually absent on the rest perfusion positron emission tomography images. At peak stress, ferumoxytol-enhanced T_1 reactivity is 6% in the hypoperfused inferior wall (arrows) and -14% in the proximal anterior wall (arrowhead, net difference of 20%). The longer ferumoxytol-enhanced T_1 value in the inferior wall compared with the anterior wall (14.5% difference; 764 ms vs. 653 ms) at stress reflects coronary steal physiology. At rest, the ferumoxytol-enhanced T_1 difference between the affected inferior wall and the remote anterior wall is smaller (4.6%). Coronary angiograms show significant 3-vessel native coronary and graft disease. LAD = left anterior descending coronary artery; LCX = left circumflex coronary artery; NS = nonsignificant; PDA = posterior descending artery; PLB = posterior left branch; SVG = saphenous vein graft.

*David Geffen School of Medicine at UCLA VA Greater Los Angeles Healthcare System 11301 Wilshire Boulevard, MC 111E Los Angeles, California 90073

E-mail: klnguyen@ucla.edu

https://doi.org/10.1016/j.jcmg.2019.01.024

Please note: This work was supported by pilot funding from the Radiological Sciences Exploratory Research Program and the Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, and by National Institutes of Health (NIH) grant RoHL127153. Dr. Nguyen has reported support from American Heart Association (AHA) grant 18TPA34170049. Dr. Ajijola has reported support from NIH grant K08HL125730. Dr. Dharmakumar has reported support from NIH grants ROHL136578 and RO1HL133407. Dr. Finn has reported support from NIH grant RO1HL127153; and has reported support from AHA grant 18TPA34170049. Dr. Hu has reported support from NIH grant RO1HL127153; and has reported support from AHA grant 18TPA34170049. Drs. Shao and Ghodrati have reported that they have no relationships relevant to the contents of this paper to disclose.

REFERENCES

1. Liu AWR, Liu JM, Greiser A, et al. Gadolinium-free cardiac MR stress T1mapping to distinguish epicardial from microvascular coronary disease. J Am Coll Cardiol 2018;71:957-968P.

 Kraitchman DL, Bluemke DA, Chin BB, et al. A minimally invasive method for creating coronary stenosis in a swine model for MRI and SPECT imaging. Invest Radiol 2000;35:445–51.

3. Nguyen KL, Yoshida T, Han F, et al. MRI with ferumoxytol: a single center experience of safety across the age spectrum. J Magn Reson Imaging 2017;45: 804-12.