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ABSTRACT

One of the challenging problems in tertiary structure prediction of helical membrane proteins (HMPs) is the determination

of rotation of a-helices around the helix normal. Incorrect prediction of helix rotations substantially disrupts native resi-

due–residue contacts while inducing only a relatively small effect on the overall fold. We previously developed a method for

predicting residue contact numbers (CNs), which measure the local packing density of residues within the protein tertiary

structure. In this study, we tested the idea of incorporating predicted CNs as restraints to guide the sampling of helix rota-

tion. For a benchmark set of 15 HMPs with simple to rather complicated folds, the average contact recovery (CR) of best-

sampled models was improved for all targets, the likelihood of sampling models with CR greater than 20% was increased

for 13 targets, and the average RMSD100 of best-sampled models was improved for 12 targets. This study demonstrated that

explicit incorporation of CNs as restraints improves the prediction of helix–helix packing.

Proteins 2017; 85:1212–1221.
VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Helical membrane proteins (HMPs) are essential com-

ponents of a living cell. They play crucial roles in orches-

trating the interactions of the cell with its environment;

for example, by mediating cellular signaling, regulating

ion gradients, and facilitating the transfer of molecules

across the cell membrane. It was estimated that 20–30%

of genes in most genomes encode HMPs.1 HMPs are

also very important therapeutic targets, about 50% of

therapeutics on the market target HMPs.2 The availabili-

ty of a three-dimensional (3D) structure of a HMP not

only improves our understanding of how the protein

works at the atomic level3 but also facilitates the devel-

opment of new therapeutics.4–6 Despite great progress

in experimental techniques for determining HMP struc-

tures, only �2% structures in the protein databank are

HMPs,7 highlighting the fact that HMP structure charac-

terization is still a challenge. Further, experimental data

for HMPs are often of limited resolution, requiring com-

putational methods to elucidate atomic-level details.

Similarly, not all biologically relevant conformations of

HMPs—which tend to be very flexible—can be studied

experimentally. Likewise, accurate computational meth-

ods for HMP structure prediction are a complement to

existing experimental techniques to enable HMP struc-

ture determination from limited experimental data.8,9

A commonly used computational approach for pre-

dicting protein tertiary structure is comparative model-

ing. However, a sequence identity of at least 25%

between target and template proteins is recommended to

give reliable models.10 Because the fold of most HMPs

are unknown and it was estimated that comparative
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modeling covers at most 10% of HMPs,11 a few de novo

methods have been developed, such as Rosetta–Mem-

brane12 and BCL::MP-Fold.7 Rosetta–Membrane assem-

bles models helix-by-helix starting from a helix near the

middle of the protein.12 For HMPs with �150 residues

or less, Rosetta–Membrane achieved RMSD100 (root-

mean-square distance normalized to a sequence of 100

residues) values of <4 Å to experimental structures.

However, the prediction accuracy with respect to helix

rotation around the main axis was either not evaluated

or very poor.7 BCL::MP–Fold uses secondary structure

element (SSE) pools and inserts helices across the mem-

brane to build complete models. It achieved RMSD100

values to the experimental structure in the range of 3 to

8 Å for most benchmark HMPs.7 For models assembled

by BCL::MP-Fold, even though TMHs are predicted to

span the membrane with the correct topology, �40%

were reported to contain helices with incorrect rotation.7

For example, contact-forming, buried residues are some-

times rotated toward the membrane. For HMP models

to be useful in applications such as structure-based drug

design, accurate modeling of helix rotation is essential.

One approach to improving the accuracy of de novo

tertiary structure prediction is to incorporate

restraints.13 These restraints may be experimental, such

as NMR chemical shifts8 and electron-paramagnetic res-

onance (EPR) accessibilities,9 or computational, such as

predicted residue–residue contacts.11,13–16 For example,

Fischer et al. recently showed that using either experi-

mental or simulated EPR accessibility increases the likeli-

hood of sampling native-like HMP folds and improves

the accuracy of predicting helix rotations.9 Residue–resi-

due contacts derived from experiments or accurate com-

putational predictions also provide substantial guiding

information for sampling. For instance, Evfold_mem-

brane developed by Hopf et al. enables de novo predic-

tion of tertiary structures of 25 HMPs by incorporating

amino acid covariation extracted from evolutionary

sequence record.11

Residue contact number (CN) is a real-valued quantity

that measures the degree of local packing of a residue

within the protein tertiary structure. The CN of a given

residue was originally computed by applying a clear dis-

tance cutoff and considering indiscriminately residues

within the cutoff.17,18 Later improvements incorporated

various distance-dependent weighting schemes to

account for the distance-dependent nature of residue–

residue interactions.19–21 CNs have been used to derive

protein dynamic properties such as B-factor profile.20

Studies have also shown that CN is the main structural

determinant of site-specific substitution rates of pro-

teins.22 Although it has been suggested that CNs could

help in tertiary structure prediction, to our knowledge,

no studies on tertiary structure prediction have explicitly

incorporated CNs.

The CNs of interfacial TMHs (peripheral TMHs of a

helical bundle) follow a signature periodic trend. Impor-

tantly, the CN signature of a TMH is tightly coupled to

its rotation: even a small perturbation of the helix rota-

tion will disrupt the CN signature. Hence, the CN signa-

ture of a TMH should give a strong constraint over its

rotation. However, experimental CNs are not available

until the tertiary structure of the protein is determined.

Very recently, we developed a dropout neural network-

based method, BCL::TMH-Expo, specifically for predict-

ing CNs for HMPs.23 CNs predicted by BCL::TMH-

Expo correlate well with CNs computed from experimen-

tal structures and mirror exposure patterns of TMHs.23

In this study, CNs predicted by BCL::TMH-Expo were

incorporated into the empirical scoring function of

BCL::MP-Fold in the form of restraints to improve pre-

diction of helix–helix packing. We tested this method on

a set of 15 benchmark HMPs that span a wide range of

fold complexity.

MATERIALS AND METHODS

Benchmark set

A set of 15 multi-spanning HMP subunits were care-

fully selected to assess whether using CN restraints can

improve the prediction of helix–helix packing. This set

consists of HMP subunits that are both structurally and

functionally diverse (Table I). Pairwise sequence identity

is 30% or less. Sequence length ranges from 156 to 467

residues. The number of TMHs ranges from 4 to 10. As

a measure of the size of transmembrane domains, the

number of TMH residues was also computed for each

target. None of these HMPs was used in the training set

of BCL::TMH-Expo or had a sequence identity of >30%

to any of the HMPs in the training set of BCL::TMH-

Expo. This benchmark set contains diverse folds ranging

from simplistic four-helix bundles and 7-TM receptors,

up to proteins with 10 TMHs or helices in reentrant

regions. Six of these HMPs are homo-oligomers. Because

of the complexity of folding oligomers, we limited the

scope of the present investigation to consider only a sin-

gle subunit of each oligomer.

Computation of experimental and predicted
contact numbers

The details of the algorithm for computing CNs from

experimental strictures can be found in two previous

studies.21,23 Briefly, the experimental CN of residue i

was computed as a weighted sum of contacts contributed

by residues over the entire protein:

CNi5
Xn

j2jj2ij>3

wij
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where wij is the contribution made by residue j and is

assigned in a distance-dependent manner such that

short-range contacting residues have higher contribution

than long-range contacting ones. Residues whose Cb

atom is within 4.0 Å to the Cb atom of the residue of

interest are assigned a contribution of 1.0; those with a

distance longer than 11.4 Å are assigned a contribution

of 0. Any residue 4–11.4 Å is assigned a contribution

between 0.0 and 1.0 according to a smooth transition

function.21 Only residues separated by more than three

residues along the sequence were considered in the calcu-

lation to reduce the bias due to sequence proximity and

local secondary structure. Experimental CNs were calcu-

lated based on structures retrieved from the OPM (Ori-

entations of Proteins in Membranes) database.24

Although a relatively low sequence identity (30%) was

maintained while compiling a list of benchmark protein

chains to reduce the homology between the modeling

benchmark set and the training set for BCL::TMH-Expo,

such level of sequence identity alone may not be suffi-

cient to exclude homology among protein chains. In fact,

substantial remote homology could still exist at this level

placing HMPs in the same structural superfamily.25 Such

remote homology between proteins in the training set

and proteins in the modeling benchmark set can lead to

an optimistic estimate of the performance for new folds.

As a way of preventing such optimism, the original train-

ing set for BCL::TMH-Expo was partitioned such that

each SCOP superfamily26 forms its own subset that con-

tains all its members and no members from other SCOP

superfamilies. Predicted CN of each residue of a model-

ing benchmark protein was then obtained through a spe-

cific variant of the neural network-based CN predictor

BCL::TMH-Expo. This variant was trained using all

remaining proteins after excluding the subset of proteins

that share the same SCOP superfamily as the modeling

benchmark protein from the original training set of

BCL::TMH-Expo. For example, for predicting the contact

numbers for 3UON, all proteins that are in the same

SCOP superfamily as 3UON were removed from the

original training proteins of BCL::TMH-Expo and a neu-

ral network was trained using the remaining proteins.

The contact numbers for 3UON were then predicted

using this retrained neural network. This strategy was

applied to each protein in the modeling benchmark set.

Note that BCL::TMH-Expo is a dropout neural network-

based algorithm that predicts CNs for HMPs. It uses the

position-specific scoring matrix (PSSM)27 derived from

multiple sequence alignment (MSA) by PSI-BLAST28 as

predictive features and outputs residue-specific CN. The

MSA for each protein chain in the benchmark set was

obtained by searching the UniRef5029 non-redundant

sequence database with PSI-BLAST for five iterations.28

The E value inclusion threshold was set to 1022. Floating

point-valued PSSM was generated from PSI-BLAST check-

point files using the source code (chkparse.c) adapted from

PSIPRED.30 Predicted CN was obtained by feeding the

floating point-valued PSSM to BCL::TMH-Expo.

Incorporating CNs as restraints in folding
simulations

The de novo membrane protein structure prediction

algorithm BCL::MP-Fold7 developed by adapting the

original algorithm BCL::Fold31 for membrane proteins

was used to assemble 3D models. BCL::MP-Fold assem-

bles 3D models by drawing TMHs from a pool of pre-

dicted TMHs. TMH pools were created from predictions

made by the combined membrane association and sec-

ondary structure predictor BCL::MASP.32 A Monte Carlo

minimizer with Metropolis criterion33 was used to sam-

ple models with low energy. To use CNs to guide sam-

pling of helix–helix packing, a CN-based penalty score

Table I
Summary of the Benchmark Set

PDB ID Structure method Resolution Length TMH TMH residue PCC MAE Oligomeric state

1OED EM 4.0 227 4 104 0.35 2.23 Homopentamer
1OKC X-ray 2.2 292 6 214 0.39 2.37 Monomer
1PV6 X-ray 3.5 189 6 163 0.62 1.66 Monomer
1PY6 X-ray 1.8 249 7 177 0.72 1.29 Monomer
1U19 X-ray 2.2 348 7 173 0.58 1.63 Monomer
2BL2 X-ray 2.1 156 4 119 0.65 2.42 Homo 10-mer
2K73 NMR NA 164 4 99 0.45 1.78 Monomer
2O9G X-ray 1.9 234 6 166 0.69 1.74 Homotetramer
2Y01 X-ray 2.6 315 7 185 0.76 1.45 Monomer
3M71 X-ray 1.2 314 10 242 0.85 1.33 Homotrimer
3QAP X-ray 1.9 239 7 168 0.69 1.35 Monomer
3UG9 X-ray 2.3 333 7 194 0.45 1.75 Homodimer
3UON X-ray 3.0 467 7 183 0.66 1.60 Monomer
4A2N X-ray 3.4 194 5 123 0.58 1.67 Monomer
4O6Y X-ray 1.7 230 6 156 0.58 1.55 Homodimer
Mean 265 6.6 164 0.60 1.72

PCC: Pearson correlation coefficient; MAE: mean absolute error; EM: electron microscopy; X-ray: X-ray diffraction; NMR: nuclear magnetic resonance.
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was added to the knowledge-based scoring function of

BCL::MP-Fold, such that:

Score5
X

i

wi3Si1wp3Penalty

where Si represents each of the individual knowledge-

based potentials previously derived and wi is the associat-

ed weight. These potentials have been detailed in prior

studies.7,34 The restraint scoring term was defined using

the following formula:

Penalty5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i51

d2
i

s

where n is the number of residues in the assembled structur-

al model, d is the difference between the CN used as

restraint and the CN calculated from the assembled struc-

tural model. wp is the corresponding weight of the penalty.

An optimal balance between the knowledge-based poten-

tials and the penalty score is critical for correcting helix

rotation while sampling native-like folds. If the weight for

the restraint penalty is too low, its capacity of correcting

helix rotation is reduced, if the weight is too high, it domi-

nants other scoring terms. An empirical approach, in which

a range of wp values were systematically tested in prelimi-

nary sampling, was used to determine a near-optimal

weight. Finally, five thousand models were assembled for

each target in the benchmark set. The procedure for gener-

ating 3D models is summarized in Figure 1.

Metrics for measuring model quality

Root-mean-square distance (RMSD) gives a useful

impression of the similarity between two structures if

there is only a slight difference between their conforma-

tions. Unfortunately, a small perturbation in just one

part of the protein (for instance, off position of a short

loop) can lead to a large RMSD and it would seem that

one structure substantially differs from the other. To

address this issue, several quality measures have been

introduced among which RMSD10035 is commonly

used. RMSD100 is a normalized, sequence length-

independent version of RMSD calculated using:

RMSD1005
RMSD

11 ln
ffiffiffiffiffi
n

100

p
where n is the number of residues superimposed. Using

RMSD100 as an indicator of structural variability reduces

the influence of the intuition that larger proteins are more

likely to differ from one another.35 In this study, RMSD100

was computed over the Ca atoms of all TMH residues.

A metric called contact recovery (CR), defined as the

percentage of native contacts recovered in the assembled

3D model, was used to measure the accuracy of helix

rotations in our previous study.7 However, the previous

definition does not account for false positive contacts

(FPC), which may be prevalent in 3D models assembled

in a globular shape when the real shape of the protein is

extended or rod-like and it has helices or strands that

are somewhat “detached” from its main domain. In such

cases, these “detached” secondary structure fragments

could potentially be packed against the main domain of

the protein by the folding algorithm, and thus, making a

substantial fraction of FPCs. Thus, we redefined CR as

the F1-score. Being the harmonic mean of precision and

recall, the F1-score accounts for FPCs by weighting preci-

sion and recall equally:

Contact Recovery5
2 3 Precision 3 Recall

Precision1Recall

where

Precision5
TPC

TPC1FPC

and

Recall5
TPC

TPC1FNC

Figure 1
Protocol for assembling 3D models. BCL::MP-Fold predicts the tertiary
structure of a HMP by assembling predicted TMHs in the 3D space. In

the first step, the TMHs are predicted using the neural network-based

membrane association and secondary structure prediction algorithm
BCL::MASP. Predicted TMHs are assembled into a 3D model, and per-

turbed using a Monte Carlo sampling algorithm. The energy of the
model after each perturbation is evaluated by knowledge-based poten-

tials and agreement to CN restraints. The perturbation is subjected to
the Metropolis criterion and is either accepted or rejected depending on

the difference between the energies before and after the perturbation.

This process is repeated for a specific number of iterations or until the
maximum number of 2000 iterations without energy improvement is

reached. [Color figure can be viewed at wileyonlinelibrary.com]
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TPC (true positive contacts) denotes the number of

contacts observed in the experimental structures that are

correctly predicted in the assembled model and FNC

(false negative contacts) is the number of contacts in the

experimental structure that are missed in the assembled

model. Two residues are considered in contact if they are

separated along the sequence by at least 12 residues and

the distance between their Cb atoms is within 8 Å. CR

reaches its best value at 100% and worst at 0%.

Computation of enrichment

The enrichment was used to measure how capable a

scoring function is to select the most accurate models

from a pool of models. To calculate enrichment, models

of a given set S are sorted by their CR values. The top

10% of the models with the highest CR values are put

into the set T (true) and the rest of the models are put

into the set F (false). The models in S are then sorted by

their evaluated score. The top 10% of models with the

lowest score are put into the set P (positive) and the rest

are put into the set N (negative). The intersection of sets

T and P are models that are correctly identified by the

scoring function and referred to as TP (true positives).

The intersection of sets F and P are models that are

incorrectly identified by the scoring function and are

referred to as FP (false positives). The enrichment value

is then computed using the following formula:

Enrichment5
TP

TP1FP
=

P

P1N

Intuitively, P
P1N

represents that probability of obtaining a

native-like model when choosing a model from S at ran-

dom, whereas TP
TP1FP

represents the probability of obtain-

ing a native-like model when choosing from a set of

models below an energy cutoff. By our experimental

design, P
P1N

has a constant value of 0.1, and therefore, the

maximum enrichment value that can be achieved is 10.

RESULTS AND DISCUSSION

Predicting CNs for HMPs in the benchmark
set

Table I shows the Pearson correlation coefficient

(PCC) between experimental and predicted CNs as well

as the mean absolute error (MAE) of predicted CNs for

each target in the modeling benchmark set. The average

PCC and the average MAE over the modeling benchmark

set were 0.60 and 1.72, respectively. Notably, the CNs for

three proteins, namely 1PY6, 2Y01, and 3M71, were pre-

dicted with a PCC> 0.70. Whereas, for 1OED, 1OKC,

3UG9, and 4A2N, the PCCs were below 0.50. Factors

affecting the accuracy of CN prediction include oligo-

meric state, whether the protein chain is bitopic, and

other factors that had been discussed previously in

detail.23 To illustrate the agreement between experimen-

tal and predicted CNs and visualize the predictions, the

experimental and predicted CNs of 1PY6 were plotted

and mapped onto its experimental structure. As shown

in Figure 2(a), the predicted CNs of 1PY6 are in close

agreement with experimental CNs, particularly in trans-

membrane regions (vertical gray bars). As expected, pre-

dicted CNs generally distinguish between the exposed

and buried faces of helices [Figs. 2(b, c)]. We, therefore,

reasoned that the native rotation of helices can be con-

fined by forcing them to satisfy predicted CNs, thus

improving the prediction of helix–helix packing.

Incorporation of CNs significantly improved
CR

The following three CR-based parameters were com-

pared among the three simulation groups (E: with

Figure 2
Agreement between experimental and predicted CNs of 1PY6. (a) Experimental and predicted CNs plotted against residues sequence positions, (b)

Experimental CNs mapped onto structure; (c) Predicted CNs mapped onto structure. Color scheme in (b) and (c): as CN increases, color changes
gradually from blue to red. Only TMHs are shown. [Color figure can be viewed at wileyonlinelibrary.com]
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experimental CNs, P: with predicted CNs, N: without

CNs):

bCR: the highest CR achieved,

lCR: the average of the 10 highest CR values,

p20: the percentage of models with a CR >20%,

bCR and lCR measure how accurate the best-assembled

models can be, whereas p20 measures how often an accu-

rate model can be sampled.

As summarized in Table II, model quality was general-

ly improved using CNs as restraints. Specifically, lCR was

improved for all targets when models were assembled

using predicted CNs as restraints, and p20 was improved

for all but two targets (1OKC and 2O9G). bCR was

improved for all targets except 4O6Y and by an average

amount of 8.07% and lCR was improved by an average

amount of 8.04% compared to folding without CN

restraints. A substantial increase in lCR (>5%) was seen

for 10 of the 15 targets, with 4 of the targets (1PY6,

2K73, 3QAP, and 4A2N) showing >10% of improve-

ment. By using CN restraints, not only the best models

were more accurate, but the probability that accurate

models were sampled was also increased. For example,

comparison of p20 among groups shows that p20 was

increased by 6.75% on average when folded with pre-

dicted CNs compared to folded without CNs. It is worth

noting that for three targets (2Y01, 3M71, and 3UON),

models with CR >20% were not sampled (p20 5 0) with-

out CN restraints but sampled with noticeable frequency

with predicted CNs as restraints. Experimental CNs fur-

ther improved CR, for example, bCR was improved by an

average amount of 17.78% when using experimental CNs

as restraints. In summary, both experimental and pre-

dicted CNs enable strongly significant improvements in

CR of folded protein models (P< 0.01, paired t test).

Accurate prediction of CNs is not sufficient
for improving prediction of TMH rotations

Though a consistent improvement in CR was observed

(Table II) when folded with predicted CNs as restraints,

the improvement was not as substantial as with experi-

mental CNs. In fact, the higher the PCC of CN predic-

tion is, the closer the lCR obtained with predicted CNs

(lCR Pð Þ) is to that obtained with experimental CNs

(lCR Eð Þ). This relationship is illustrated by a scatter plot

[Fig. 3(a)] of the PCCs of CN prediction and the values

of
lCR Eð Þ2lCR Pð Þ

lCR Eð Þ
, which measures the relative difference

between lCR Eð Þ and lCR Pð Þ. And the correlation shows that

there is still the need to improve the accuracy of CN predic-

tion if one is to make the best of using contact number as

restraints.

Intuitively, one might also expect that more accurate

prediction of CNs leads to larger relative improvements

in CR relative to folding without CNs. However, the cor-

relation between PCCs and the values of
lCR Pð Þ2lCR Nð Þ

lCR Nð Þ
,

which measures the relative improvement in lCR Pð Þ com-

pared to lCR Nð Þ, is only very weak (0.28). For instance,

lCR Pð Þ is improved by 58.63% relative to lCR Nð Þ for 2K73

although the accuracy of CN prediction for it is low

(PCC: 0.45). Whereas for 2BL2 and 2O9G for which CN

predictions are comparably accurate (PCCs are 0.65 and

0.69, respectively), lCR Pð Þ is improved by only 11.26%

and 10.78% relative to lCR Nð Þ, respectively. This suggests

that other factors besides accurate CN prediction affect

improvement in CR.

One intuitive factor is the size of proteins. In fact, as

the size of transmembrane domain (measured by the

number of TMH residues) increases it becomes more dif-

ficult to predict the correct rotation of helices. To illus-

trate this, the values of lCR Eð Þ and lCR Nð Þ are plotted

Table II
Summary of Contact Recovery

bCR (%) lCR (%)
Relative improvement in lCR (%)

p20 (%)

Target E P N E P N
lCR Pð Þ2lCR Nð Þ

lCR Nð Þ
3100 E P N

1OED 73.10 38.02 28.93 70.59 32.88 23.47 40.09 51.77 5.17 0.33
1OKC 18.34 10.78 9.96 14.81 9.14 8.17 11.87 0.00 0.00 0.00
1PV6 31.55 30.02 21.90 26.93 23.09 17.06 35.35 1.37 0.35 0.03
1PY6 54.65 41.86 22.31 44.45 35.56 20.08 77.09 13.01 10.31 0.11
1U19 30.28 25.31 20.46 26.98 23.59 16.57 42.37 2.43 1.87 0.04
2BL2 68.40 59.29 54.50 66.78 55.22 49.63 11.26 76.26 50.98 29.80
2K73 59.49 49.33 30.70 57.04 44.13 27.82 58.63 72.04 33.58 1.45
2O9G 14.65 14.15 11.67 11.47 11.92 10.76 10.78 0.00 0.00 0.00
2Y01 36.15 21.97 19.42 30.60 20.70 17.30 19.65 1.94 0.19 0.00
3M71 23.46 23.58 17.14 21.77 20.35 14.42 41.12 0.54 0.20 0.00
3QAP 48.24 43.64 26.16 39.67 39.48 22.24 77.52 15.63 10.86 0.32
3UG9 38.38 35.90 24.16 35.98 30.08 20.66 45.60 14.71 6.77 0.14
3UON 32.37 21.81 19.16 25.93 20.02 16.01 25.05 1.11 0.09 0.00
4A2N 49.64 42.45 27.24 41.56 38.93 24.65 57.93 11.49 11.26 0.48
4O6Y 57.08 31.92 35.29 46.25 29.25 24.94 17.28 8.09 2.84 0.47
Mean 42.39 32.67 24.60 37.39 28.96 20.92 38.11 18.03 8.96 2.21

E: contact numbers computed using experimental structure; P: contact numbers predicted by neural network; N: no contact numbers; lCR improved by 5% or more

(bold) and <5% (italic) when folded with predicted CNs.

Structure Prediction of Membrane Proteins Aided by Contact Numbers

PROTEINS 1217



against number of TMH residues. As shown in Figure 3(b),

lCR is negatively correlated with number of TMH residues

(R 5 20.78 for lCR Eð Þ and 20.65 for lCR Nð Þ). In addition

to this negative correlation, improvement in mCR also

becomes less substantial as transmembrane domain

becomes larger. This is reflected on the fact that the gap

between the two fitted lines shrinks as TMH residues

increases. It is also worth noting that lCR Nð Þ is below 20%

for 7 out of 11 targets with >150 TMH residues, whereas

lCR Eð Þ is above 20% for all but two targets (1OKC and

2OG9).

Another factor is that some proteins might just repre-

sent easy cases whereas others difficult cases for the

BCL::MP-Fold algorithm no matter whether CN restraints

are incorporated or not. For easy cases, on the one hand,

BCL::MP-Fold samples models with high CR even without

CN restraints and for them it is difficult to improve sub-

stantially upon such a high CR with the current level of

accuracy of CN prediction. For example, the membrane

rotor of the V-type ATPase 2BL2 whose subunit adopts a

four-helical bundle fold36 can be considered an easy case

for BCL::MP-Fold. As mentioned previously, its lCR Nð Þ is

as high as 49.63% even without CN restraints and the rel-

ative improvement in CR in terms of lCR is a comparably

low value of 11.26%. For difficult cases on, the other

hand, BCL::MP-Fold is not able to sample models with

comparably high CR even experimental CN restraints par-

tially due these proteins’ intrinsic topological complexity.

In this modeling benchmark set, 1OKC and 2O9G repre-

sent such cases as all TMHs of 1OKC are kinked and

2O9G has two helices located in reentrant regions.37,38

RMSD100 is improved using CN restraints

While the primary motivation to introduce CNs as

restraints was to improve prediction of helix rotation, an

improvement in RMSD100 was also expected after helix

rotations are improved. To verify this, we compared the

following parameters among the three simulation groups

(E: with experimental CN, P: with predicted CN, N:

without CN):

bRMSD100: the lowest RMSD100 achieved,

lRMSD100: the average of the lowest 10 RMSD100

values,

p5: the percentage of models with an RMSD100 value

lower than 5 Å.

When using experimental CNs as restraints, bRMSD100

was decreased for all targets and lRMSD100 was decreased

for all but 2O9G Table III. As discussed in the previous

section, the subunit of the tetrameric aquaporin 2O9G is

a special case in that it has two reentrant helices sitting

on top of each other.37 When using predicted CNs as

restraints, a decrease in bRMSD100 is seen for 13 targets

and a decrease in lRMSD100 is seen for 12 cases. In terms

of lRMSD100, a decrease of 0.5 Å or more is achieved for

4 targets and the most substantial improvement is a 0.79

Å decrease for 4A2N. Use of predicted CNs yields

smaller, albeit still statistically significant (P< 0.05,

paired t test), improvements to lRMSD100. It is also inter-

esting to note that models with RMSD100 within 5 Å to

experimental structures were assembled with noticeable

frequencies for three targets (1PV6, 1U19, and 3UON)

when using predicted CNs as restraints, whereas no such

models were assembled without CNs as restraints.

Helix rotation accuracy is improved by
predicted CN restraints

To visualize the refinement of helix rotation in models

with good accuracy at the the fold level, experimental

CNs were mapped onto the experimental structure and

3D models with the lowest RMSD100 values. Helices

with incorrect rotation would have buried residues

exposed and exposed residues buried, thus by coloring

buried and exposed residues differentially, incorrectly

rotated helices in models can be readily identified. 1PY6

was selected, in part because its fold was generally

Figure 3
(a) Negative correlation (R 5 20.57) between PCCs of CN prediction and relative differences between lCR Eð Þ and lCR Pð Þ: lCR Pð Þ values obtained
with better CN predictions is closer to lCR Eð Þ than those obtained with poorer CN predictions. (b) mCR is negatively correlated with number of

TMH residues. Orange dots indicate lCR Nð Þ values and blue dots indicate lCR Eð Þ values. [Color figure can be viewed at wileyonlinelibrary.com]
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predicted correctly even without the CN restraints. The

CR values of the 1PY6 models with the lowest RMSD100

values are 41.86% and 7.29%, respectively when folded

with predicted CNs and without CNs. Without CN

restraints, the buried face of TMH4 and that of TMH6

were modeled to exposed. This can be readily seen by

comparing the rotation of their buried face with that in

the experimental structure [Fig. 4(a,c)]. The incorrect

rotation of these two helices discrupts many native con-

tacts between the buried residues of TMH4 and TMH6

(exemplified by red spheres), and likewise, leading to a

significantly lower CR. With CN restraints, the rotations

of TMH4 and TMH6 were consistent with the experi-

mental structure [Fig. 4(b)].

Increased ability of the scoring function at
selecting accurate models

When folded without CN restraints, the average

enrichment value over the benchmark set was 1.12. Using

predicted CNs as restraints, enrichment was increased for

14 targets and the average enrichment was improved to

1.64 (Table IV). Paired t test showed that enrichment is

improved with statistical significance when folding with

predicted CNs (P< 0.01). Indeed, enrichment exceeded

1.50 when folding with predicted CNs for eight targets,

versus only three targets when folding without CN

restraints. Enrichment was improved even further by

using experimental CNs as restraints. For example, the

average enrichment was increased to 1.92 and 13 targets

had enrichment �1.50. Because of the intrinsic inaccuracy

of the scoring function in the approximation to the poten-

tial energy surface, it should be admitted that these relative-

ly low enrichment values are indicative of a difficulty in

selecting the most accurate models of the BCL::MP-Fold

algorithm.39 Nevertheless, the statistically significant

improvement in enrichment indicates that CN restraints

provide the scoring function with critical information

about residue burial, often corresponding to misrotated

helices.

Figure 4
Experimental CNs mapped onto experimental structures and folded models. (a) experimental structure; (b) model with lowest RMSD100 folded with

predicted CNs as restraints; (c) model with lowest RMSD100 folded without CN restraints. Color scheme: gradient from blue—fully exposed, red—fully
buried. Only TMHs are shown for clarity. Spheres represent Ca atoms of buried residues of helices 4 and 6 in the experimental structure.

Table III
Summary of RMSD100

bRMSD100 (�) lRMSD100 (�) p5 (%)

Target E P N E P N E P N

1OED 1.88 3.69 3.70 2.08 3.85 3.89 13.47 3.80 4.28
1OKC 10.93 11.73 11.75 11.85 12.25 12.05 0 0 0
1PV6 4.34 4.14 5.09 4.92 4.72 5.49 0.16 0.16 0
1PY6 3.13 3.40 4.20 3.99 4.38 4.70 0.63 0.35 0.22
1U19 3.83 4.44 5.10 5.17 5.42 5.80 0.07 0.04 0
2BL2 2.14 2.36 2.77 2.25 2.84 2.86 11.99 8.14 13.67
2K73 3.01 3.59 3.82 3.06 3.72 4.03 32.44 10.76 7.07
2O9G 10.42 12.21 11.41 12.60 12.72 12.41 0 0 0
2Y01 4.94 5.06 5.26 5.21 5.46 5.76 0.04 0 0
3M71 5.63 5.75 5.94 6.05 6.26 6.36 0 0 0
3QAP 3.33 3.89 4.26 4.25 4.50 4.65 0.56 0.39 0.3
3UG9 3.36 3.24 4.57 3.76 4.19 4.83 1.54 0.77 0.28
3UON 3.70 4.94 5.30 5.17 5.30 5.81 0.13 0.02 0
4A2N 3.51 3.56 4.30 3.94 3.79 4.58 1.28 1.53 0.55
4O6Y 2.71 4.21 3.59 3.36 4.90 4.04 1.04 0.07 0.45
Mean 4.46 5.08 5.40 5.18 5.62 5.82 4.22 1.74 1.79

E: contact numbers computed using experimental structure; P: contact numbers predicted by neural network; N: no contact numbers; lRMSD100 improved by 0.5 Å or

more (bold), 0.0–0.5 Å (italic), and no improvement (normal) when folded with predicted CNs.
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LIMITATIONS AND FUTURE
DIRECTIONS

Incorporating the burial status of residues has been

shown to improve de novo structure prediction for solu-

ble proteins.21,31,40 It is thought that the benefit of

incorporating burial status in de novo structure predic-

tion is even larger for HMPs41,42 because distinguishing

buried from exposed residues in the apolar membrane

environment is more challenging for nonspecific scoring

functions. Our results indicate that explicit incorporation

of CN restraints into the BCL::MP-Fold algorithm signif-

icantly improves the prediction of TMH rotations and

increases the accuracy of helix–helix packing.

Our results also shows that using experimental CNs as

restraints resulted in significantly more improvement in

modeling performance than using predicted CNs. This

indicates that the performance of the CN predictor

BCL::TMH-Expo is an important factor in the BCL::MP-

Fold algorithm for HMPs, especially for simple folds

such as 1OED. Although using predicted CNs improved

modeling outcomes for most targets, we found that accu-

rate prediction of CNs does not guarantee a substantial

improvement in CR or RMSD100 for every target. For

example, only marginal improvement in CR was seen for

2O9G (Table II) even though its CNs were predicted

with high PCC (Table I) and using predicted CNs did

not improve RMSD100 for 1OKC or 2O9G (Table III).

1OKC and 2O9G represent intrinsically difficult targets

for BCL::MP-Fold and probably for other methods too.

The mitochondrial ADP/ATP carrier (1OKC) has its

three odd-numbered TMHs kinked substantially by the

presence of prolines,38 whereas the aquaporin (2O9G)

contains two reentrant regions.37 Tertiary structure

prediction for them was either not benchmarked by

methods such as Rosetta-Membrane12 or Evfold_mem-

brane,11 or proved to be poor with BCL::MP-Fold.

BCL::MP-Fold was not able to sample models remotely

similar to their experimental structure. The best

RMSD100 values for both are >10 Å (Table III).

BCL::MP-Fold does not typically accurately represent

bent helices. It starts with an idealized, perfectly straight,

pool of TMHs. While there are bending moves during

the Monte Carlo sampling that bend the TMHs, the cur-

rent algorithm does not adequately capture the kinks and

bends that are commonly seen in native TMHs. This

limitation can be overcome with increased probabilities

for the bending Monte Carlo moves or more sophisticat-

ed bending moves that perturb several //w angles simul-

taneously by fitting to observed TMH fragments.

CONCLUSIONS

Contact number is a key property of amino acid resi-

dues that indicate their local packing density. We have

demonstrated that explicitly incorporating contact num-

bers as restraints into the membrane protein structure

prediction algorithm, BCL::MP-Fold, significantly

improved prediction of helix–helix packing. Specifically,

contact number restraints helped sample more accurate

helix rotation and fold, and improved the ability of the

scoring function to select native-like models. The relative

improvement from using CN restraints was often greatest

for proteins with relatively simple folds, though improve-

ments in contact recovery were observed across all pro-

teins in the benchmark set when using predicted CNs.

More accurate contact number predictors and structure

sampling algorithms that can sample the correct fold of

large proteins will be critical to future development of de

novo tertiary structure prediction for HMPs.

SOFTWARE AVAILABILITY

BCL::MP-Fold has been integrated into the Biochemi-

cal Library (BCL) software suite that is being actively

developed. It is available at http://www.meilerlab.org/

bclcommons under academic and business site licenses.

The BCL source code is published under the BCL license

and is available at http://www.meilerlab.org/bclcommons.

Contact numbers can be readily predicted for novel

HMPs using BCL::TMH-Expo via its webserver: http://

www.meilerlab.org/servers/tmh_expo.
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