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Key Points

• VAMP isoforms regulate
the kinetics and extent
of platelet granule
exocytosis.

•Manipulating platelet
sensitive factor attach-
ment protein receptors
alters granule secre-
tion, which affects the
hemostatic balance.

We genetically manipulated the major platelet vesicle-associated membrane proteins

(VAMP2, VAMP3, and VAMP8) to create mice with varying degrees of disrupted platelet

secretion. As previously shown, loss of VAMP8 reduced granule secretion, and this defect

was exacerbated by further deletion of VAMP2 and VAMP3. VAMP2D3D82/2 platelets

also had reduced VAMP7. Loss of VAMP2 and VAMP3 (VAMP2D3D) had a minimal impact

on secretion when VAMP7 and VAMP8 were present. Integrin aIIbb3 activation and

aggregation were not affected, although spreading was reduced in VAMP2D3D82/2 platelets.

Using these mice as tools, we asked how much secretion is needed for proper thrombosis

and hemostasis in vivo. VAMP2D3Dmice showed no deficiency, whereas VAMP82/2mice had

attenuated formation of occlusive thrombi upon FeCl3-induced arterial injury but no

excessive bleeding upon tail transection. VAMP2D3D82/2 mice bled profusely and failed to

form occlusive thrombi. Plasma-coagulation factors were normal in all of the strains, but

phosphatidylserine exposure was reduced in VAMP2D3D and VAMP2D3D82/2 platelets. From

our data, an ;40% to 50% reduction in platelet secretion in vitro (dense and a granule)

correlated with reduced occlusive thrombosis but no compromise in hemostasis. At a.50%

reduction, thrombosis and hemostasis were defective in vivo. Our studies are the first

systematic manipulation of platelet exocytic machinery to demonstrate a quantitative

linkage between in vitro platelet secretion and hemostasis and thrombosis in vivo. The

animals described will be invaluable tools for future investigations into how platelet

secretion affects other vascular processes.

Introduction

Platelets are anucleate cell fragments that contribute to a myriad of processes: thrombosis, hemostasis,
angiogenesis, wound healing, and immunity.1,2 Many of these functions are mediated by their releasate,
which is generated through the exocytosis of cargo from the 3 types of granules: dense, a, and secretory
lysosomes. The importance of these cargo is seen in dense and a-granulopathies, which cause a range
of bleeding diatheses and other pathologies.3 Given its importance, controlling releasate generation
offers potential therapeutic usefulness. In this article, we develop a collection of genetically altered mice
as tools to define how exocytosis is needed for proper hemostasis.

Platelet granule exocytosis is facilitated by a family of membrane proteins called soluble N-
ethylmaleimide sensitive factor attachment protein receptors (SNAREs). Based on localization and
residues at the center of their SNARE domains, SNAREs are classified as target (t/Q, Glu) SNAREs
and vesicle (v/R, Arg) SNAREs (also known as vesicle-associated membrane proteins [VAMPs]).4

A complex of v- and t-SNAREs spans opposing bilayers to mediate membrane fusion and, thus,
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vesicle/granule cargo release.5 The t-SNAREs, SNAP23,6-8 syn-
taxin-11,9 and syntaxin-8,10 are important for platelet secretion.
Proteomic studies report 6 v-SNAREs (VAMP2, VAMP3, VAMP4,
VAMP5, VAMP7, and VAMP8); however, 4 of these v-SNAREs
(VAMP2, VAMP3, VAMP7, and VAMP8) are the most abundant in
human and mouse platelets.11-14 VAMP7 and VAMP8 play the
most critical roles, whereas VAMP2 and VAMP3 have been
considered secondary v-SNAREs.15,16 The importance of VAMP8
is underscored by studies correlating single nucleotide polymor-
phisms in VAMP8 with early-onset myocardial infarction.17,18

Additionally, a microRNA that regulates VAMP8 expression
correlates with platelet hyperreactivity.19 These data imply that
the levels of VAMP8 play a dominant, but not exclusive, role in
controlling platelet secretion.

To determine how much platelet secretion is necessary to attain
a hemostatic balance, we generated mouse strains in which we
genetically manipulated the major platelet VAMPs. We generated
platelet-specific V2D3D and V2D3D82/2 animals and characterized
secretion from their platelets. The hemostatic profiles of these
animals were compared with wild-type (WT) and V82/2 animals.
We found that the loss of VAMP2 and VAMP3 had little effect on
the kinetics or magnitude of secretion from platelet granules as
long as VAMP7 and VAMP8 were present. However, V2D3D82/2

platelets showed significantly diminished granule secretion, and
V2D3D82/2 animals bled profusely in tail-bleeding assays and failed
to form occlusive thrombi. By comparing in vitro granule cargo
release profiles and in vivo bleeding phenotypes, we distinguished
the levels of platelet exocytosis required for normal hemostasis from
those that are needed to sustain occlusive thrombus growth.

Methods

The methods are described in detail in supplemental Methods.

Mouse strains and genotyping

To delete VAMP2 and VAMP3, we crossed an RC::PFtox strain
(generously provided by S. Dymecki, Harvard Medical School, Boston,
MA20) with a PF4Cre strain (generously provided by R. Skoda,
University Hospital, Basel, Switzerland21). The RC::PFtox strain has a
genomic insertion encoding the catalytic subunit of the tetanus
toxin endopeptidase, which can be expressed upon Cre-mediated
excision of a STOP cassette. The STOP cassette consists of the 39
portion of the yeast His3 gene, an SV40 polyadenylation sequence,
and a false translation initiation codon followed by a 59 splice donor
site. The floxed STOP cassette is inserted between the promoter
and tetanus toxin–coding sequences of a transgene, ensuring that
few, if any, transcripts containing the coding region are generated.
Tetanus toxin specifically cleaves only VAMP2 and VAMP3.22,23

This strategy was needed because VAMP22/2 mice are embryon-
ically lethal,24 as are VAMP3/82/2 mice (S.W.W., unpublished
observations). These RC::PFtox/PF4Cre mice (V2D3D) were
further crossed with a global VAMP82/2 strain (V82/2) to
create an RC::PFtox/PF4Cre/VAMP82/2 strain (V2D3D82/2).
For genotyping RC::PFtox,20 the primers were forward primer
59-GCCGATCACCATCAACAACTTC-39 and reverse primer
59-GCAGAGCTTCACCAGCAACG-39 using the following con-
ditions: 94°C for 4 minutes for 1 cycle, 94°C for 30 seconds,
58°C for 30 seconds, 72°C for 1 minute for 35 cycles, and, finally,
72°C for 5 minutes. The genotyping of V82/2 mice16 and PF4Cre21

was as described.

Study design and controls

The breeding schemes produced 3 lines with normal VAMP levels:
RC::PFtox1/PF4Cre2, RC::PFtox2/PF4Cre1, and RC::PFtox2/
PF4Cre2. These strains were considered WT controls because
their VAMP levels were unchanged (data not shown). They were
evaluated alongside the VAMP-deletion strains in the tail bleeding
time and FeCl3-induced arterial injury assays. Bleeding times and
occlusion times showed no significant differences among these
3 WT strains (supplemental Figure 5). The in vitro experiments
described in this article were performed using pooled blood
from $1 of 3 WT control strains.

Results

Generation of platelet-specific V2D3D and V2D3D82/2

mouse models

To overcome embryonic lethality in V22/2 animals, megakaryocyte-
specific V2D3D animals were generated by crossing PF4Cre
recombinase mice with a mouse harboring a tetanus toxin gene
downstream of a floxed STOP cassette. Tetanus toxin light chain
cleaves VAMP2 and VAMP3.23,24 Megakaryocyte-specific V2D3D

animals were crossed with global V82/2 animals to generate
V2D3D82/2 animals. Animals from both novel strains, V2D3D and
V2D3D82/2, were born at expected Mendelian ratios and were
healthy, fertile, and had no gross developmental or anatomical
abnormalities. The average weight of littermate controls at 12 weeks
(24.41 6 2.96 g) was comparable to V2D3D (23.48 6 2.97 g) and
V2D3D82/2 (23.58 6 1.90 g) mice. Hematological parameters,
including red blood cell count, white blood cell count, platelet
number, and mean platelet volume, were not statistically different
from littermate controls (supplemental Figure 2), indicating normal
hematopoiesis. There were no significant defects in serotonin
uptake (dense-granule cargo), PF4 (a-granule cargo), or b-hexos-
aminidase (lysosomal cargo) levels in platelet lysates from these
strains (data not shown). See supplemental Methods and supple-
mental Figure 5 for a discussion of WT controls.

Semiquantitative western blotting, using Rab GDI as a loading
control,25 confirmed the appropriate deletion or reduction of
VAMP2, VAMP3, and VAMP8 in platelets from these strains
(Figure 1). There was no change in expression of VAMP7 and
VAMP8 in V2D3D platelets; consistent with our previous observa-
tions for VAMP2 and VAMP3.26 However, manipulating VAMP8
levels on the V2D3D background surprisingly affected VAMP7
levels. A partial decrease in VAMP8 (eg, V2D3D81/2 platelets)
correlated with increased VAMP7, whereas complete loss of
VAMP8 resulted in decreased VAMP7. These data imply co-
ordinated control of VAMP levels in platelets or megakaryocytes
and demonstrate that the V2D3D82/2 platelets are hypomorphic for
VAMP7. Expression of the t-SNAREs syntaxin-11 and SNAP23,
as well as the t-SNARE regulator Munc18b, were unaffected.
Expectedly, loss of VAMP3 reduced fibrinogen levels in platelets,27

which was exacerbated in V2D3D82/2 platelets.

Release from activated V2D3D82/2 platelets was

slower and less extensive

To measure how VAMP2, VAMP3, and VAMP8 influenced platelet
granule secretion, we examined the agonist- and time-dependent
release of cargo from all 3 platelet granules: dense, a, and
lysosomes. The release from V82/2 platelets was reduced at lower
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thrombin concentration but reached comparable levels for dense
and a-granule release from WT platelets as thrombin concen-
trations increased (Figure 2A-C). As previously seen,16 loss of
VAMP8 had more influence on a-granule (;40%-50% reduction) and
lysosome (;50% reduction) release than on dense granule release.
This may be due, at least in part, to the defective release of
secondary agonists from dense granules (adenosine triphosphate
[ATP]/adenosine 59-diphosphate [ADP], calcium, serotonin) that
affects the release from a granules and lysosomes.28 Secretion of
granule cargo from V2D3D platelets, in response to increasing
thrombin concentrations, was essentially equal to that from WT
platelets (Figure 2A-C) and underlined the ancillary roles of VAMP2
and VAMP3 in platelet secretion. V2D3D82/2 platelets showed an

;50% decrease in dense granule secretion, an ;80% to 90%
reduction in a-granule secretion, and an ;70% reduction in
lysosomal secretion upon stimulation with 0.5 U/mL thrombin
(Figure 2A-C), indicating that loss of VAMP2, VAMP3, and VAMP8
had a synergistic effect on secretion that was greater than the
deletion of VAMP8 alone, perhaps due to the additional loss of
VAMP7.

Time-course analysis (using 0.05 U/mL thrombin) showed that the
loss of VAMP8 affected the rates of early (first 30 seconds) dense
granule release but not its maximal extent16 (Figure 2D). Dense
granule release rates in V2D3D platelets were not affected, whereas
V2D3D82/2 platelets showed delayed dense granule release that
reached only ;50% of WT at 5 minutes (Figure 2D). Similar
patterns were observed in a and lysosomal release (Figure 2E-F).
These patterns are consistent with ancillary roles for VAMP2 and
VAMP316 or, alternatively, the ;50% reduction in VAMP7 levels
noted in Figure 1. These data demonstrate that manipulation of the
VAMPs in platelets alters release kinetics and extents. These data
imply differential roles for these 3 VAMPs in platelet exocytosis and
perhaps in some steps of granule cargo sorting or biogenesis (eg,
our report of a role for VAMP3 in fibrinogen trafficking27).

V2D3D82/2 platelets showed normal integrin activation
and modest platelet aggregation defects. To confirm the
phenotypes indicated by the secretion assays, we used lumi-
aggregometry to analyze ATP/ADP release. Release in response to
0.05, 0.1, and 0.5 U/mL thrombin was minimally affected in V2D3D

platelets but was less inhibited at the higher concentrations in
V2D3D82/2 platelets (Figure 3D-F). Aggregation was not affected
at the higher agonist doses (Figure 3A-C). Under our in vitro
conditions (0.05 U/mL thrombin), there was no ATP secretion from,
and limited aggregation of, V2D3D82/2 platelets. The ATP release
at 0.1 and 0.5 U/mL thrombin was sufficient to support normal
aggregation (Figure 3B-C).

Surface exposure of P-selectin and LAMP-1 (a-granule and
lysosome membrane markers, respectively) was analyzed by flow
cytometry. Activation-dependent exposure of both granule mem-
brane proteins was reduced in V2D3D82/2 platelets compared with
WT platelets (Figure 4A-B). Total surface staining for aIIbb3
integrin decreased by 10% to 15% in V2D3D platelets and by
;25% in V2D3D82/2 platelets (Figure 4D). This may be due to an
alteration of integrin trafficking to the plasma membrane (PM) and
was not pursued further. In agreement with aggregometry data,
there was no significant difference in activated integrin staining with
phycoerythrin (PE)-conjugated JonA staining (Figure 4C). Thus,
loss of VAMP2, VAMP3, and VAMP8 together, had minimal effects
on aIIbb3 integrin activation under the conditions tested.

Fusion pore dynamics were affected by the loss of
platelet VAMPs. Because SNAREs mediate granule–PM fu-
sion, we sought to determine how the loss of specific VAMPs
affected fusion pore formation and/or dilation.29,30 Based on
Figure 2, we selected 2 time points, 90 seconds (partial cargo release)
and 300 seconds (maximal cargo release), and used electron
microscopy (EM) tomography to measure fusion pore size and
prevalence in platelets stimulated with thrombin. We focused on a
granules because they are more abundant and readily identifiable.
Fusion events were scored per platelet profile, and the widths of fusion
pores were estimated across multiple z-steps in the EM tomographs
(Figure 5). In the resting state, fusion pores were not observed (data not
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shown); however, upon stimulation, there was a time-dependent
increase in prevalence and size, which culminated in granules
becoming unidentifiable as they merged into the PM. For WT
platelets, median pore diameter increased from 65 nm to 157 nm,
whereas the mean was skewed slightly higher (90 seconds:
82.4 nm; 300 seconds: 166 nm; Figure 5A-B,E). This skew to
larger pore size is further evidence that dilation is time dependent. In
the V2D3D82/2 platelets, fusion pores were rare (2 per 35 profiles).
Pores were only detected at the earliest time point, suggesting that

the pores produced were unsustainable. Interestingly, the fusion
pore prevalence and size distribution in the absence of VAMP8
showed a delay relative toWT. In V82/2 platelets, 1 fusion pore was
identified in 24 profiles at 90 seconds, whereas 10 pores were
identified in 18 profiles at 300 seconds. The median and mean
values showed a similar skew to larger pores, as observed in WT
platelets. The delayed pore formation in V82/2 platelets and the lack
of sustained pore formation in V2D3D82/2 platelets are consistent
with the decreased a-granule cargo release seen in Figure 2B,E.
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Figure 2. Loss of VAMP2, VAMP3, and VAMP8 affects the kinetics and the extent of platelet secretion. [3H]-5-[HT] (serotonin)–labeled platelets from WT, V82/2,
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Role of platelet secretion in spreading

Previous studies reported a role for granule secretion in platelet
spreading.15,31 Using platelets from the mutant mice, we addressed
the significance of granule secretion to spreading (supplemental
Figure 4). When plated on fibrinogen-coated coverslips, V82/2

platelets showed a slight reduction in spreading compared with
WT platelets (supplemental Figure 4B). V2D3D platelets covered
more area than WT platelets at 30 minutes, although the area
covered was similar at later time points (supplemental Figure 4).
This is most likely due to the loss of VAMP3, which we previously
showed causes platelets to spread more rapidly.27 Spreading of
V2D3D82/2 platelets was markedly slower and the area covered
was significantly reduced compared with WT platelets (supple-
mental Figure 4A).

Effect of platelet secretion on thrombosis

and hemostasis

Together, these data demonstrate that VAMP-deficient mice have
distinct platelet exocytosis profiles. These mice were used to assess
how exocytosis affects platelet function in vivo, using 2 assays: tail
bleeding time and FeCl3-induced carotid injury (Figure 6A-B). Tail
bleeding times were comparable for WT, V32/2, V2D3D, and V82/2

mice. Even after reducing VAMP8, the tail bleeding times did not
increase in V2D3D81/2 mice. However, tail bleeding was significantly
increased in V2D3D82/2mice (mean time, 571.746 72.61 seconds)
compared with WT mice (mean time, 250.07 6 86.82 seconds).
For most V2D3D82/2 mice, application of pressure was required
to stop the bleeding. In the FeCl3-induced injury model, the
strains responded differently. The average times to occlusion were
comparable for WT (;6.5 minutes), V81/2 (;7 minutes), V2D3D

(;7 minutes), and V2D3D81/2 (;6.5 minutes) mice. Occlusion times
were more variable in V82/2 mice, and the average was significantly
increased (;21 minutes). This was even more true in V2D3D82/2

mice (;28 minutes), which generally failed to form occlusive thrombi
during our observation period of 30 minutes. Males and females
showed no differences in bleeding or occlusion times (supplemental
Figure 6). These data demonstrate that platelet exocytosis contrib-
utes differentially to thrombosis vs hemostasis, because normal
thrombosis appears to require more platelet secretion.

Because several factors control hemostasis, we examined the
coagulation cascades and the degree of phosphatidylserine (PS)
exposure in our strains. Prothrombin time (PT) and activated partial
thromboplastin time (APTT) assays of plasma showed no differ-
ences among the strains, suggesting no defects in the coagulation
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platelets affects ATP/ADP release but not aggregation.
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and ATP release and aggregation were measured for 5 minutes.
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system of these animals (Figure 6C). Although the loss of VAMP8
did not affect PS exposure, loss of VAMP2/3 did (;30% reduction),
as measured by lactadherin binding. Further deletion of VAMP8
(ie, V2D3D82/2) exacerbated this defect to an ;50% decrease in
PS exposure in response to thrombin (Figure 6D). Although not
significant in cases of V2D3D and V2D3D81/2, the P values
(.15 and .14, respectively) indicate a trend toward significance.
These data reveal a connection between VAMP isoforms and PS
exposure, perhaps through platelet granule secretion and\or
intracellular trafficking in platelets. To gain insight into this effect,
we probed for transmembrane protein 16F (TMEM16F), a phospho-
lipid scramblase important for PS exposure.32-34 Its levels did not
differ significantly in any of the strains tested (Figure 6E).

Discussion

In this article, we describe a collection of genetically engineered
mice in which the platelet-secretory machinery is altered to yield
differential effects on platelet exocytosis, thrombosis, and hemo-
stasis (Figure 7A). We have measured platelet secretion and
defined how the 4 major platelet VAMPs mediate the release of
cargo from the 3 classes of granules. Using these mice, we have
estimated the level of secretion needed for hemostasis in tail
bleeding and occlusive thrombosis in a FeCl3-injury model. Our
studies represent the first attempt at defining the extent to which
platelet secretion is needed for thrombosis and hemostasis in vivo.

Role of VAMPs in platelet secretion

In previous reports,15,16 single deletion of VAMP7 or VAMP8 blocks
cargo release, but not completely, suggesting that compensatory
effects or alternative membrane-fusion pathways could occur.
Using recombinant VAMPs as standards and quantitative western
blotting, Graham et al showed that VAMP2 and VAMP8 are most

abundant in mouse platelets, whereas VAMP3, VAMP7, and
VAMP8 are abundant in human platelets.12 This was validated by
mass spectrometry.11,13 Using the semiquantitative western blotting
data in Figure 1, we can estimate the remaining relative VAMP levels
in our mice (Figure 7A) and, thus, correlate their levels to platelet
secretion. Discordance of the curves in Figure 7B demonstrate that
total VAMP levels, in aggregate, do not correlate with platelet
secretion. This rebuts promiscuous VAMP functions, which might be
predicted based on the heterogeneity of VAMP interactions observed
in some systems.35-37 Instead, our data confirm major contributions
for VAMP7 and VAMP8.15,16

Although the loss of VAMP2/3 had minimal effect on its own, it
exacerbated the effects of VAMP8 loss, perhaps due to effects on
VAMP7. V2D3D82/2 platelets had significant secretion defects at all
agonist levels, and V2D3D82/2 mice had profound bleeding and
occlusion defects in vivo. Although this suggests some contribu-
tions from VAMP2 and VAMP3, the nature of their role is unclear.
VAMP3 mediates integrin trafficking and endocytosis of granule
cargo in platelets.27 VAMP8 is also needed for endocytic traffick-
ing in some cells.38 Possibly, VAMP3 and VAMP8 function in
overlapping pathways; thus, the double deletion of VAMP3 and
VAMP8 affects the trafficking and/or localization of VAMP7,
accounting for its reduction in V2D3D82/2 platelets (Figure 1;
supplemental Figure 1A). Consistently, we have been unable to
create a global VAMP3/8 deletion strain due to embryonic lethality
(S.W.W., unpublished observations). VAMP2’s role is unclear
because its levels in human platelets are low.11,12,14,16 In practical
terms, our V2D3D82/2 mice are hypomorphic for VAMP7 (Figure 1),
which, given the importance of VAMP7 and VAMP8, explains the
severity of the secretion and hemostatic defects measured
(Figure 6). Fortuitously, we have created a strain with a greater
reduction in secretion than either of the single VAMP deletions.
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Future attempts to create VAMP7/82/2 mice are underway to fully
address this point.

To understand how VAMPs affect the kinetics of platelet granule
secretion, we conducted detailed EM tomographic studies and
examined fusion pore formation and subsequent dilation. Such
pores are the most likely route of granule cargo release, and our
data demonstrate that VAMPs are required for fusion pore
formation and expansion (Figure 5). Few pores were detected in
V2D3D82/2 platelets. The delayed pore formation in V82/2 platelets
confirms the importance of VAMP8 for initial membrane fusion and
parallels the delayed secretion noted in Figure 2. The remaining
VAMP7 is not sufficient for rapid fusion pore formation and/or
expansion. These data imply that VAMP8 and VAMP7 contribute to

normal fusion pore formation/dilation. Consistently, reconstituted in
vitro assays show that alterations in VAMP levels affect fusion pore
dynamics and stability.39 Such alterations clearly affect granule
cargo release (Figure 2).

A previous analysis40 suggests that VAMP8 is preferred for
compound granule–granule fusion, whereas VAMP7 mediates
PM–granule (primary) fusion. However, these discrete roles should
not be considered mutually exclusive nor absolute. Loss of VAMP8
(V82/2) delayed primary fusion of a granules, and loss of VAMP8
and reduction of VAMP7 (V2D3D82/2) almost eliminated it
(Figure 5). The partial release defects seen in platelets from the
single-deletion mouse strains15,16 (Figure 2) argue that VAMP7
and VAMP8 are used for primary fusion, which is required for
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measurable cargo release. VAMP8’s abundance relative to that of
VAMP7 makes it a logical choice to mediate compound fusion,
because more of those events are likely to be required; however,
further analysis of V72/2 platelets will be needed to directly address
this point. It should be noted that using primary and compound
fusion would differentially affect cargo release rates and extents and

perhaps account for the heterogeneity of a-granule cargo release
noted previously.41

Platelet secretion and thrombosis

Thrombi appear stratified with highly activated platelets forming a
central core and less activated platelets at the periphery (ie, the
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shell).42-45 We posit that the low-agonist doses in our assays
resemble platelet secretion in the shell, whereas the high-agonist
doses resemble what occurs in the core of a thrombus, proximal to
the tissue damage (Figure 2A-C). At either low- or high-agonist
doses, loss of VAMP2/3 had no significant effect on secretion and
no effect on our in vivo assays of thrombosis and hemostasis. Loss
of VAMP8 alone had more effect on a-granule release than on
dense granule release. V82/2 animals showed delayed thrombosis,
with smaller thrombi in the laser-injury model.12 Consistently, there
was also an effect on FeCl3-induced occlusion, but there was no
overt defect on tail bleeding (Figure 6A-B). Thus, that level of
secretion is sufficient to stop bleeding but is insufficient for
extensive thrombus growth. Single deletion of VAMP7 caused no

thrombosis or bleeding defects.15 Deletion of VAMP2, VAMP3, and
VAMP8 together caused a profound effect on release from dense
and a granules at all agonist levels. The defect was sufficient for a
bleeding diathesis and an FeCl3-induced occlusion defect
(Figure 6A-B). It should be noted that release from these platelets
was not completely abolished; however, what little is released
(presumably via VAMP7-mediated fusion) was insufficient for
normal hemostasis or thrombosis.

Analysis of our data (Figure 7) demonstrates several aspects of how
secretion may affect hemostasis and thrombosis. First, lysosomal
release did not appear to be required. It was profoundly defective in
several of our strains (Figure 2), but that, on its own, failed to
correlate with any hemostatic defects. Second, defects in dense
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granule release had a greater impact on bleeding than did defects
in a-granule release (Figure 7C-D). This is consistent with the
phenotypes of patients (and mouse models) with dense and a
granulopathies. Patients with Hermansky–Pudlak syndrome or
Chédiak–Higashi syndrome, in general, have more severe bleeding
than do patients with gray platelet syndrome.46 Third, bleeding was
most profound when the platelets were less able to secrete at the
highest agonist doses. Milder release defects with low-dose
thrombin did not correlate with bleeding but did affect thrombus
growth16 (Figure 7C-D). Taken together, our data underline the
importance of rapid and maximal release from dense granules and
indicate a threshold for effective hemostasis. Our data demonstrate
that thrombosis is more sensitive to manipulations of platelet
secretion than is hemostasis.

VAMP deficiency and coagulation

Given the bleeding phenotypes (Figure 6A-B) and the fact that
coagulation factors are secreted proteins, it was important to
measure coagulation in our mice. There were no differences in PT
or APTT, indicating no defects in extrinsic or intrinsic pathways,
respectively (Figure 6C). Exposure of PS on platelet surfaces drives
the formation and localization of prothrombinase complexes.47

Surprisingly, platelets from 3 of our mouse strains showed some
defect in lactadherin binding. V2D3D82/2 platelets had the most
robust impairment (;50% decrease), which could explain their
hemostasis defects (Figure 6A-B). However, platelets from V2D3D

and V2D3D81/2mice had lower lactadherin binding (;30% decrease);
however, neither had secretion (Figure 2; supplemental Figure 3)
or hemostatic (Figures 6 and 7) defects. This surprising finding
yields insights into another facet of how platelet secretion could
affect hemostasis and suggests a threshold for PS exposure
requirements. Nbeal22/2 animals also have a PS exposure defect
consistent with a granules being important for PS exposure.48 It is
unclear whether the loss of dense granule release also contributes
to this deficit, because the secondary agonists in dense granules
(ie, ADP) could be needed to induce PS exposure.28 Alternatively,
given VAMPs’ roles in intracellular trafficking (ie, proposed effect on
VAMP7), sorting and/or targeting of the enzymes needed for PS
exposure could have been influenced during platelet biogenesis.
However, TMEM16F, which is a Ca21-dependent phospholipid
scramblase important for PS exposure,32-34 was unchanged in
our strains (Figure 6E). Thus, further investigations are necessary
to address these various questions.

Significance

This is the first study that defines the contributions of platelet
granule secretion to hemostasis and thrombosis. By altering the
types and amounts of VAMPs, we created a set of mouse strains
with distinct platelet-secretion profiles that were used to define the
threshold of secretion needed for occlusive thrombosis without
bleeding. About 50% to 60% of dense and a-granule secretion is
needed for this crucial balance. This insight is invaluable in
developing novel antithrombotic strategies and better managing
current antithrombotic regimens. Furthermore, the animals de-
scribed in this study will be vital tools to address how platelet
secretion affects other physiological and pathophysiological
processes.
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