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A B S T R A C T

Cystathionine β-synthase (CBS), the key enzyme in the transsulfuration pathway, links methionine metabolism
to the biosynthesis of cellular redox controlling molecules. CBS catalyzes the pyridoxal-5′-phosphate-dependent
condensation of serine and homocysteine to form cystathionine, which is subsequently converted into cysteine.
Besides maintaining cellular sulfur amino acid homeostasis, CBS also catalyzes multiple hydrogen sulfide-gen-
erating reactions using cysteine and homocysteine as substrates. In mammals, CBS is activated by S-adeno-
sylmethionine (AdoMet), where it can adopt two different conformations (basal and activated), but exists as a
unique highly active species in fruit fly Drosophila melanogaster. Here we present the crystal structure of CBS from
honeybey Apis mellifera, which shows a constitutively active dimeric species and let explain why the enzyme is
not allosterically regulated by AdoMet. In addition, comparison of available CBS structures unveils a substrate-
induced closure of the catalytic cavity, which in humans is affected by the AdoMet-dependent regulation and
likely impaired by the homocystinuria causing mutation T191M.

1. Introduction

Transsulfuration is an ancient metabolic process that allows the in-
terconversion of methionine (Met) and cysteine (Cys) through the
common intermediates homocysteine (Hcy) and cystathionine (Cth)
(Brosnan and Brosnan, 2006) (Fig. 1). In evolutionary terms, the
transsulfuration consists in two routes, the “reverse” and the “forward”
pathways (Carmel and Jacobsen, 2001). The reverse transsulfuration is
found in a wide range of species, such as mammals and yeast, and
converts Met into Cys (Brosnan and Brosnan, 2006) (Fig. 1). Some or-
ganisms, including enteric bacteria (Kredich, 1996; Auger et al., 2002),
plants (Macnicol et al., 1981) and yeast (Cherest and Surdin-Kerjan,
1992), also possess the forward transsulfuration route that enables the
formation of Met from Cys (Brosnan and Brosnan, 2006) (Fig. 1). Im-
portantly, the presence or absence of these routes place different me-
tabolic constraints on different organisms. For example, yeast can uti-
lize either methionine or cysteine as a sulfur source, whereas humans
are auxotrophic for Met, but are not for Cys.

Cystathionine β-synthase (CBS, EC 4.2.1.22), is the key enzyme in
the reverse transsulfuration pathway (Mudd et al., 1965), and catalyzes
the pyridoxal-5′-phosphate (PLP)-dependent condensation of serine and
Hcy to form Cth and H2O (Fig. 1). The following second step in the
route is mediated by another PLP-requiring enzyme, the cystathionine-
γ-lyase (CGL), that cleaves Cth into Cys, 2-oxobutyrate and ammonia
(NH3) (Banerjee et al., 2003; Miles and Kraus, 2004). The resulting Cys
can either be used in protein synthesis or for the biosynthesis of glu-
tathione (GSH, a potent antioxidant) (Beatty and Reed, 1980), taurine
(an organic acid widely distributed in animal tissues and a major con-
stituent of bile) (Stipanuk, 1986) or can be further catabolized into
sulphate (Fig. 1) (Brosnan and Brosnan, 2006; Prudova et al., 2006).
Thus, CBS links methionine metabolism to the biosynthesis of cellular
redox controlling molecules (Mudd et al., 1982; Welch and Loscalzo,
1998; Seshadri et al., 2002; Meier et al., 2003; Beyer et al., 2004; Mudd,
2011). Because of its pivotal role in the transsulfuration pathway, lack
of CBS activity leads to classical homocystinuria (CBSDH, Online
Mendelian Inheritance in Man (OMIM no. 236200)), an autosomal
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recessive inborn error of sulfur amino acid metabolism characterized by
increased levels of Hcy in plasma and urine. Clinical symptoms of
CBSDH manifest as a combination of connective tissue defects, skeletal
deformities, vascular thrombosis, and mental retardation (Mudd et al.,
2001). Remarkably, increased plasma Hcy concentrations are con-
sidered as a risk factor for dementia and Alzheimer's disease (Seshadri
et al., 2002).

Besides maintaining cellular Hcy homeostasis, CBS also catalyzes
alternative hydrogen sulfide (H2S)-generating reactions using Cys and
Hcy as substrates (Fig. S1) (Singh et al., 2009, 2011; Singh and
Banerjee, 2011), what converts this enzyme in the major physiological
source of hydrogen sulfide. H2S plays a relevant role in the

cardiovascular and nervous systems (Yadav and Banerjee, 2012; Paul
and Snyder, 2012), induces smooth muscle relaxation, and has anti-
inflammatory and cytoprotective effects on cells (Szabó, 2007). Note-
worthy, alterations of the H2S metabolism are linked with human dis-
eases: in the brains of Alzheimer's disease patients H2S synthesis is
decreased (Eto et al., 2002), whereas in Down syndrome patients H2S
synthesis is increased due to the overexpression of CBS (Kamoun, 2004;
Kabil and Banerjee, 2010). In turn, transsulfuration pathway-dependent
H2S production was found related to dietary restriction-mediated
longevity in yeast, worm, fruit fly, and rodent models, providing an
interesting explanation for the long-sought relationship between slim-
ness and longevity (Hine et al., 2015).

Fig. 1. The transsulfuration pathway. The transsulfuration
pathway, the metabolic route that allows the conversion of
homocysteine into cysteine, is connected to the methionine
cycle. Cystathionine β-synthase (CBS) is the first enzyme in
the reverse transsulfuration pathway (in black arrows),
playing pivotal role in deciding the fate of homocysteine. In
some organisms, such as bacteria and yeast, cysteine can be
converted into homocysteine by the forward transsulfura-
tion pathway (grey dashed arrows), which is mediated by
the cystathionine γ-synthase (CGS) and cystathionine β-
lyase (CBL) enzymes.
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The H2S-production ability is not exclusive of eukaryotes but ex-
tends to bacteria as well, where the CBS and CGL genes are found
clustered together (Matoba et al., 2017). Importantly, the presence of
these genes is crucial for survival, as deletion of the CBS/CGL gene
cluster or chemical inhibition of the encoded enzymes render pathogens
such as Bacillus anthracis, Lactobacillus plantarum, Helicobacter pylori or
Pseudomonas aeruginosa highly sensitive to a multitude of antibiotics
(Shatalin et al., 2011).

The domain organization, quaternary structure and regulatory me-
chanism of CBS enzymes vary among species (Fig. 2). While most of the
CBS enzymes form homotetramers like in humans (Ereño-Orbea et al.,
2013a), rodents and yeasts (Jhee et al., 2000), we find homodimers in
insects like fruit fly (Koutmos et al., 2010) or honeybee (Oyenarte et al.,
2012), and monomers in worms (Vozdek et al., 2012) (Fig. 2). In higher
eukaryotes, the N-terminal region includes a heme-binding domain
(Fig. 2) that is thought to function in redox sensing and/or enzyme
folding (Janosík et al., 2001b; Singh et al., 2007; Majtan et al., 2010).
The heme-binding domain is followed by a conserved catalytic core
with the fold of the type II family of PLP-dependent enzymes (Christen
and Mehta, 2001; Meier et al., 2001). Finally, the C-terminal region,
also known as “Bateman module”, consists of two consecutive “CBS
domains” (Fig. 2) (Bateman, 1997; Baykov et al., 2011; Ereño-Orbea
et al., 2013b; Anashkin et al., 2017) and exhibits the highest degree of
sequence variability in CBS primary structures (Vozdek et al., 2012).
Strikingly, some organisms like C. elegans lack this module (Fig. 2),
which plays a key role in regulating the activity and oligomerization
degree of many CBS enzymes. Interestingly, the presence of missense
mutations or the artificial removal of this region not only activates the
human (Kery et al., 1998; Janosík et al., 2001a), and yeast (Taoka and
Banerjee, 2002) CBS enzymes, but causes a disassembly of protein
tetramers into homodimers (Meier et al., 2003; Kery et al., 1998). The
molecular basis for all these observations has historically been delayed
by the scarce availability of structural data, which until 2010 was
limited to the catalytic core of human CBS (Meier et al., 2001; Taoka
et al., 2002) and to the full-length enzyme from Drosophila melanogaster
(Koutmos et al., 2010). The long-sought crystal structure of hCBS
(Ereño-Orbea et al., 2013a, 2014; McCorvie et al., 2014) recently
opened a new scenario and showed how, in the lack of the allosteric
regulator S-adenosylmethionine (AdoMet), the Bateman module oc-
cludes the entrance to the catalytic cavity, thus maintaining the enzyme

in a basal, low activity state (Fig. S2) (Ereño-Orbea et al., 2013a). It
additionally revealed that binding of AdoMet to the Bateman module
causes a relative rotation of its two CBS motifs that weakens their in-
teraction with the loops configuring the entrance to the catalytic cavity,
thus leading to the activated conformation of the enzyme (Fig. S2)
(Ereño-Orbea et al., 2014). At the same time, Bateman modules from
complementary subunits associate into an AdoMet-bound disk-like
structure designated as CBS module that stabilizes an activated state
(Ereño-Orbea et al., 2014) (Fig. S2). Such an activated state is struc-
turally similar to that found in the fruit fly enzyme (Koutmos et al.,
2010). Strikingly, the allosteric mechanism involving two different
conformations (basal and activated) occurs only in mammals. CBS en-
zymes from less evolved eukaryotes, such as Drosophila melanogaster,
only exist in a constitutively activated conformation ensuring a per-
manent access of substrates into the catalytic cavity (Koutmos et al.,
2010).

Aimed to reduce the current structural gap existing in the CBS field,
we describe herein the crystal structure of full-length CBS from hon-
eybee Apis mellifera (AmCBS) at 3.2 Å resolution. These data provide
new insights for understanding the molecular mechanisms involved in
catalysis and allosteric regulation of CBSs, and may help to develop
drugs to modulate CBS activity.

2. Results

2.1. Overall structure

The AmCBS crystals, grown as described previously (Oyenarte et al.,
2012), belong to the space group P212121 and contain two protein
molecules in the asymmetric unit (Table 1). Each AmCBS subunit
(Fig. 3) is composed of a (i) a N-terminal heme domain (residues 1-30);
(ii) a central catalytic core (residues 31-343) and (iii) a C-terminal
Bateman module (residues 371-504). The last two blocks are tethered
by a long linker (residues 344-370) that contains two short α-helices
(α11, α12) (Figs. 3, 4). Structurally, the fold of the catalytic core be-
longs to the β-family of the PLP-dependent enzymes and includes
twelve α-helices and two β-sheets consisting of four (β3–β6) and six
(β1–β2, and β7–β10) strands, respectively (Figs. 2 and 4).

Fig. 2. The domain architecture, oligomerization and reg-
ulation of various CBS. In yellow, the catalytic domain (re-
sidues 1-386 in hCBS). The cofactors heme (red) and pyr-
idoxal 5′-phosphate (PLP, green) bind to the heme domain
and the catalytic core, respectively. The regulatory domain
(Bateman module, turquoise) contains the CBS motifs pair
(CBS1 and CBS2, blue). The total number of amino acids of
the protein is also indicated. Red circles represent the most
frequent oligomeric state: monomeric, dimeric or tetra-
meric. Abbreviations and Uniprot codes: hCBS, Homo sa-
piens CBS, P35520; RnCBS, Rattus norvegicus CBS, P32232;
MmCBS, Mus musculus CBS, Q91WT9; dCBS, Drosophila
melanogaster CBS, Q9VRD9; AmCBS, Apis mellifera CBS,
Q2V0C9; ScCBS, Saccharomyces cerevisiae CBS; CeCBS,
Caenorhabditis elegans CBS; TcCBS, Trypanosoma cruci CBS,
Q9BH24; LpCBS, Lactobacillus plantarum CBS, F9UT54;
BaCBS, Bacillus anthracis CBS, Q81LL5.
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2.2. The heme domain

The heme binding domain of AmCBS is ten and forty residues
shorter than the equivalent region in dCBS (Koutmos et al., 2010) and
hCBS (Meier et al., 2001; Taoka et al., 2002) (Ereño-Orbea et al., 2013a;

McCorvie et al., 2014), respectively (Fig. 4). It lacks secondary elements
and embraces three helices of the catalytic core (α3, residues 77-92; α7,
residues 185-202 and α8, residues 218-230) (Fig. S3). Its function re-
mains enigmatic but the sequence and structural similarity with hCBS
suggest that it likely fulfills a structural and/or a regulatory role (Taoka
et al., 2002; Janosík et al., 2001a; Majtan et al., 2008; Weeks et al.,
2009). The heme group is relatively surface exposed and is nested in a
hydrophobic pocket formed by residues 7-24, helices α7 and α8 and the
loop following the strand β6 (Figs. 4, S3). The iron in heme is axially
coordinated by the sulfhydryl group of Cys12 and the Nε2 atom of
His23. In turn, the sulfhydryl group of Cys12 forms additional polar
interactions with the side chain of Arg225 and the main chain nitrogen
of Trp14 (Fig. S3). The heme carboxylate groups are partially solvent
accessible and participate in polar interactions with other residues like
Arg8 or Tyr11.

2.3. The catalytic core

The central catalytic core of AmCBS (Fig. 3) is structurally similar to
that found in the human (Meier et al., 2001; Taoka et al., 2002; Ereño-
Orbea et al., 2013a, 2014; McCorvie et al., 2014) and in the fruit fly
(Koutmos et al., 2010) CBSs, and shows the overall fold of PLP-de-
pendent enzymes (Fig. S4). Interestingly, the comparative analysis of all
these enzymes revealed that this region is in turn composed by two
distinguishable blocks: (i) a large static subdomain that in AmCBS in-
cludes amino acid residues 1-76 and 184-342 (Fig. 4) (the equivalent
residues in hCBS are 1-116 and 226-384, respectively; see Fig. S5) and
(ii) a small moveable subdomain, which is intercalated in the larger
block and includes residues 77-183 and 117-225 in AmCBS and hCBS,
respectively (Fig. 4, S5). Both subdomains present an α/β fold and are
linked in AmCBS by two loops formed by residues 70-77, that link
strand β2 and helix α3, and 279-284, that are located between strand
β6 and helix α7 (Fig. 4). The crevice formed between the static and the
moveable subdomains (Fig. S4) accommodates the PLP cofactor, which
is deeply buried in the cavity and resides as an internal aldimine, where
the ε-amino group of Lys78 forms a Schiff base with aldehyde of PLP
(Fig. S3). There are other hydrogen bonds between the nitrogen of the
pyridine ring and the Oγ of Ser307, and between the 3′-hydroxyl group
of PLP and the Nδ2 of Asn108. A highly conserved phosphate binding
loop known to participate in catalysis and composed by residues
Gly215, Thr216, Gly217, Gly218 and Thr219 in AmCBS, is located
between strand β7 and helix α8 (Figs. S3 and S5). In AmCBS, the

Fig. 3. Structure of the AmCBS protomer. The N-terminal
domain (in green) with heme cofactor (spheres) precedes
the catalytic core (in blue) that contains the PLP molecule
(balls and sticks) at the catalytic site. The C-terminal
Bateman module (in yellow) includes two CBS motifs (CBS1,
CBS2) and is linked to the core through a long linker (in
red). Two main (empty) cavities, S1 and S2, are formed
between the central β-sheets of the two CBS motifs.

Table 1
Statistics for data collection and refinement.

Protein construct AmCBS

Data collection and Process
Radiation source Bruker Microstar H
Radiation wavelength (Å) 1.5418
Space group/ PDB code P212121/5OHX
a (Å) 86.1
b (Å) 96.1
c (Å) 180.7
Molecules per a.u. 2
Resolution (Å) 49.4–3.2 (3.3-3.2)
Rsym

a (%) 15.4 (69.3)
Mean I/I 10.2 (2.6)
Completeness (%) 99.7 (99.9)
Redundancy 6.2 (5.8)
Wilson B factor (Å) 60.3

Refinement statistics
Number of working reflections 25365
Number of test reflections 1287
Rwork

b (%)/Rfree
c (%) 19.7/23.1

No. of atoms
Protein 7590
Ligand 116
Water 0

Average B factors (Å2)
Protein 60.035
Ligand 55.66
Water 0

RMSDs
Bond lengths (Å)/angles (o) 0.003/1.128
Ramachandran plot statistics (%)
Residues in most favored regions 96.7
Residues in additional allowed regions 3.3
Residues in disallowed regions 0

One crystal was used per data set. Values in parentheses are for the highest resolution
shell. aRsym= Σhkl Σi |Ii (hkl)− 〈I(hkl)〉I/Σhkl Σi Ii(hkl); bRwork= Σ |Fo− Fc |/ΣFo;
cRfree= Σ |Fo− Fc|/ΣFo, calculated using a random 5% of reflections that were not in-
cluded throughout refinement. N/A, not applicable.
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Fig. 4. CBSs sequences. Sequence alignment of full-length cystathionine β-synthases from Homo sapiens (hCBS, Uniprot code P35520), Apis mellifera (AmCBS, Uniprot Q2V0C9) and
Drosophila melanogaster (dCBS, Uniprot Q9VRD9). The moveable subdomain of the catalytic core is shadowed in blue. The secondary elements of AmCBS are indicated.
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entrance of the catalytic cavity is defined by four loops that include
residues 104-107, 128-134, 151-161 and 253-274. The first three loops
are located in the moveable subdomain, while the fourth loop belongs to
the larger static subdomain. In our AmCBS crystals, residues 252-254 of
the fourth loop are not visible in the electron density map, suggesting a
high mobility of this zone in the absence of bound substrates, as it has
previously been described in both hCBS (Meier et al., 2001) and dCBS
(Koutmos et al., 2010).

2.4. The Bateman module of AmCBS does not host AdoMet

The Bateman module within the C-terminal domain is tethered to
the catalytic core by a long linker (residues 341-370) (Figs. 3 and 5) and
consists of two CBS motifs (CBS1: 369-430; CBS2: 437-504) that exhibit
a α13-α14-β11-β12-α15 and a α16-β13-α17-β14-β15-α18 fold, re-
spectively (Figs. 3-5). Each short N-terminal helix (α13 or α16) forms
an integral part of the other CBS motif by antiparallel packing between
its C-terminal β-strand (β12 or β15) and the α-helix (α18 or α15), so

that both CBS motifs form a nested structure with pseudo-C2 symmetry
(Fig. 5). The two CBS motifs interact with each other via their two- or
three-stranded β-sheets, and both long edges of this bilayer interface
form two major cavities (designated S1 and S2) (Figs. 4 and 5). Im-
portantly, the chemical-physical properties of sites S1 and S2 lack key
features to host nucleotides thus explaining why, in contrast with
mammals, insect CBS enzymes do not bid and are not regulated by
AdoMet. Among these features is, for example, the lack of a conserved
aspartate at the first turn of the α-helix following the last β-strand of
each CBS domain (Figs. 6, S6), which is crucial to stabilize the or-
ientation of the ribose ring of the nucleotide within the cavity through
the interaction with its hydroxyl groups (Ereño-Orbea et al., 2013a,b,
2014). In AmCBS, the position of this aspartate is occupied by a lysine
(K422) or by a histidine (H487) in sites S1 and S2, respectively (Figs. 6,
S6). In addition, the hydrophobic cage required to accommodate the
adenine ring of the nucleotide (Ereño-Orbea et al., 2013b; Baykov et al.,
2011; Anashkin et al., 2017) is only partially present in site S1 (residues
Y467, V443, V447, V468) and is completely absent in cavity S2, which

Fig. 5. Structure of the AmCBS dimer. AmCBS (left) exists as a tight dimer in which the two protomers interact through residues located at both, the catalytic and the regulatory region
similarly to dCBS (right) (Koutmos et al., 2010). In both proteins, the Bateman modules (Bat-1 and Bat-2) from complementary subunits associate into a disk-like CBS module. In this
conformation, the entrance to the catalytic cavity of each subunit is open and accessible, thus yielding a highly active species. Each Bateman module contains two cavities (S1 and S2)
that, in contrast with the human enzyme, are not able to bind AdoMet. Heme and PLP are depicted in spheres and sticks, respectively.
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is occupied by polar residues (N484, N399, D401, S402, Q403) (Fig. 6).
Similar characteristics can be observed in dCBS (Koutmos et al., 2010)
(Fig. 6), which has very high basal activity (Fig. S7) (i.e. is con-
stitutively active) and does not bind nor is regulated by AdoMet
(Majtan et al., 2014).

Of note, the Bateman module of AmCBS does not contact the cata-
lytic core except via the connecting linker (Figs. 3 and 5, Movie S1).
This arrangement helps maintaining a concrete distance between the
CBS2 motif of the Bateman module and the loops defining the entrance

of the active site cavity. The CBS1 motif also remains far apart from the
protein core with no elements in between (Fig. 3). Among the main
interactions between the linker and the CBS2 domain is a salt link be-
tween residues E350 (at helix α11) and R460 (at helix α17). The po-
sition of the α-helical region of the linker is supported by hydrophobic
interactions between Y347 (α11) and the alkyl chains of residues R460
(at helix α17) and K464. The linker maintains several hydrophobic
interactions with the catalytic core through residues M349 (α11), I336,
Y339, F343, V344, L355, and R294 (α9), I297 (α9) and L303.

Fig. 6. Sites S1 and S2 in AmCBS, hCBS and dCBS. The figure shows the main residues located at (A) site S1 and (B) site S2 of AmCBS (left, in yellow), hCBS (middle, in grey) and dCBS
(right, in orange), respectively. AdoMet at site S2 of hCBS is represented in orange sticks. Residues from complementary subunits are in blue sticks, indicated with #. The presence of an
aspartate residue as well as of a threonine at the equivalent position of residues D538 and T535 of hCBS (marked in panels B and C with red and black asterisks, respectively), is a known
key feature to host adenosine derivatives in the canonical cavities of CBS domains (Baykov et al., 2011; Ereño-Orbea et al., 2013b) (Supp. Fig. S6). (C) Sequence alignment of the main
amino acid residues configuring the walls of sites S1 and S2 in AmCBS, hCBS and dCBS. The nucleotide binding motif G-h-h-T/S-x-x-D/N usually found in CBS domains that host adenosine
derivatives (where ‘‘h’’ is hydrophobic, ‘‘x’’ is any residue, T/S is a threonine or a serine residue and D/N is an aspartate /asparagine residue) (Ereño-Orbea et al., 2013b) (see also Supp.
Fig. S6), is indicated underneath the third block of aligned residues. The secondary elements that contain the corresponding residues in AmCBS are indicated above the alignment.
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Movie S1. Similarly to dCBS (Koutmos et al., 2010), AmCBS associates
into tight dimers that represent the functional biological unit. Each
subunit shares a large interface (3282 Å2) with the complementary
subunit with extensive contributions from the central core (1861 Ǻ2)
and the Bateman module (1316 Ǻ2) (Fig. 5). This interface is mainly
hydrophobic with hydrogen bonds and no salt bridges between the two
protomers. A pair of four-helix bundles forms the interface (α14 and
α15 from CBS1 of protomer A interact with α17 and α18 from CBS2 of
protomer B, and α17 and α18 from CBS2 of protomer A with α14 and
α15 from CBS1 of protomer B) (Fig. 5). Remarkably, the two Bateman
modules from the complementary subunits associate through their helix
bundles to configure an antiparallel disk-like CBS module (Fig. 5)
(Baykov et al., 2011; Ereño-Orbea et al., 2013b; Anashkin et al., 2017).
Such arrangement is rare among CBS domain proteins as Bateman
modules usually associate into parallel CBS modules; however, it is
observed in structures of all full-length CBS enzymes solved so far
(Koutmos et al., 2010; Ereño-Orbea et al., 2014). It imposes a physical
separation between the Bateman module and the entrance of the cat-
alytic cavity and permits free access of substrates into the catalytic site
(Fig. 5). Thus, our crystals contain constitutively active dimers of
AmCBS.

3. Discussion

The crystal structure of AmCBS described herein provides the third
three-dimensional structure of a full-length CBS enzyme (second from
an insect) containing a regulatory Bateman domain available to date.
Two additional structures of full-length CBS enzymes from Lactobacillus
plantarum (PDB code 5BIH) (Matoba et al., 2017) and from Bacillus
anthracis (PDB code 5XW3) (Devi et al., 2017) have been deposited
recently, although the corresponding protomers do not include a Ba-
teman module in their amino acid sequences (Fig. 2). The species
present in our crystals correspond to highly active dimers (likely con-
stitutively activated), (Fig. 5, Movie S1). Similar conformation and
consequences have also been observed for dCBS (Koutmos et al., 2010;
Majtan et al., 2014). The main cavities (S1 and S2) in the Bateman
module of AmCBS lack key residues and characteristics usually required
to host nucleotides or their structural analogs, as shown for the human
enzyme (Ereño-Orbea et al., 2014; McCorvie et al., 2014) and other CBS
domain proteins of unrelated function (Baykov et al., 2011; Ereño-
Orbea et al., 2013b) (Figs. 6, S6). Therefore, AdoMet, the allosteric
activator of the mammalian enzyme (Ereño-Orbea et al., 2014;
McCorvie et al., 2014), cannot bind and consequently does not regulate
the AmCBS activity (Fig. S7). It seems clear that the capability of CBS to
adopt two different conformations, the basal (of low activity) and the
activated, is exclusive to mammals and appeared later in evolution
(Kabil et al., 2011).

The structural data on CBS enzymes obtained during the last decade
(Meier et al., 2001; Taoka et al., 2002; Koutmos et al., 2010; Ereño-
Orbea et al., 2013a, 2014; McCorvie et al., 2014; Matoba et al., 2017)

revealed a significant resemblance between the catalytic core of CBSs
and the β-family of PLP-dependent enzymes (Fig. S4). However, the
difficulties found to crystallize full-length CBS enzymes in the absence
and in the presence of their multiple ligands have prevented to prove
with certainty whether CBSs suffer substrate-induce conformational
changes analogous to those reported for the related PLP-dependent
enzymes (Raj et al., 2013). For example, binding of methionine to
conserved residues surrounding the active site of O-acetyl serine sulf-
hydrylase (OASS) (evolutionary the most closely related PLP-dependent
enzyme to CBS) results in the movement of the N-terminal domain and
the closure of the active site (Raj et al., 2013). Similar changes were
observed in threonine deaminase (TD) (Hyde et al., 1988) or trypto-
phan synthase (TS) (Rhee et al., 1996). By analyzing all the available
structural information on CBS enzymes, we found that the moveable
subdomain of CBS catalytic core participates in such substrate-induced
structural change (Fig. 7). Of note, in OASS the majority of the sub-
strate-to-protein hydrogen bonding interactions affect the residues lo-
cated in two conserved loops: the “Asn loop” (85-TSGNT-89) from the
N-terminal domain and the “Gly loop” (236-GIGA-239) from the C-
terminal domain (marked with asterisks in Fig. S5). In this protein, the
largest conformational change observed in the substrate-bound state is
represented by residue S86 (equivalent to S106 in AmCBS and S147 in
hCBS), which shifts around 6 Å to make contacts with the substrate
methionine in the active site (Raj et al., 2013). Although it has not been
credited as important as the Asn loop, some additional elements in-
cluding strands β4 to β7, helices α6, α7 and loops 85-88 and 130-133 of
OASS (all belonging to the small subdomain), modify their conforma-
tion concomitantly (Raj et al., 2013). Our comparative analysis (Fig.
S5) shows that CBS enzymes contain equivalent loops in their amino
acid chains represented by 105-TSGNT-109 (Asn loop) and 263-GIG-
265 (Gly loop) in AmCBS, by 146-TSGNT-150 and 305-GIG-307 in
hCBS, and by 115-TSGNT-119 and 274-GIG-276 in dCBS, respectively
(Figs. 4, S5). Noteworthy, the structural superimposition of basal hCBS
(PDB codes 4L3V, 4L0D) (Ereño-Orbea et al., 2013a) with AdoMet-
bound activated hCBS (PDB code 4PCU) (Ereño-Orbea et al., 2014) also
revealed that strands β4 to β7, loops L171-174 and L191-202, as well as
helices α6 and α7 (comprising a major part of the moveable sub-
domain), vary their orientation in the activated state with respect to the
basal conformation (Fig. 7). Of note, we have noticed that helices α4
and α5 of hCBS remain unaltered and anchor the moveable motif to the
static subdomain. These observations indicate that the inhibitory effect
exerted by the regulatory Bateman module of hCBS in the basal state
(Ereño-Orbea et al., 2013a) is not determined solely by a closure of the
loops defining the entrance of the catalytic cavity, as we initially
thought (Ereño-Orbea et al., 2014), but by the compression of a major
part of the moveable subdomain of the protein core that behaves as rigid
body. Moreover, an equivalent whole-motif displacement is observed in
dCBS when the structure of the native protein (PDB ID 3PC3) is su-
perimposed with its corresponding substrates-bound complexes (PDB
codes 3PC3, 3PC4) (Koutmos et al., 2010). As shown in Figs. 7 and 8,
binding of substrates into the catalytic cavity of dCBS promotes the
movement of the entire moveable motif, and not of just the entrance
loops, as was formerly proposed (Koutmos et al., 2010). In the same
way, it can be shown that the effect of substrate binding in OASS is not
limited to the displacement of a single loop (Raj et al., 2013), but in-
volves a shift of a region equivalent to the moveable motif of hCBS
(Fig. 7). Based on these observations and despite no crystal structure of
hCBS in complex with its substrates is available so far, it is reasonable to
postulate that there are two circumstances that trigger a displacement
of the moveable motif and the consequent closure of the catalytic cavity
in the human enzyme: (i) the presence of the Bateman module above
the catalytic cavity (as seen in the basal state) and (ii) the presence of
bound substrates at the PLP site. Interestingly, in constitutively active
CBS enzymes, such as dCBS or AmCBS, where the Bateman module
never interacts with the catalytic core, the closure of the moveable motif
appears to exclusively dependent on the presence of bound substrates
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inside the catalytic cavity. In agreement with this hypothesis, the
moveable motif of AmCBS shows an open state in our crystals equivalent
to that found in apo-dCBS (PDB code 3PC2) (Koutmos et al., 2010)
(Fig. 8).

Interestingly, twelve of the 160 pathogenic mutations described in
homocystinutic patients (http://cbs.lf1.cuni.cz/mutations.php) affect
residues that are located in the moveable submotif (Fig. 9). This group
includes the mutation T191M that is prevalent in the Iberian Peninsula
and South America, (Urreizti et al., 2003, 2006a,b; De Lucca and
Casique, 2004; Porto et al., 2005; Bermúdez et al., 2006; Hnízda et al.,
2012; Alcaide et al., 2015). The T191M variant is structurally unstable
and shows decreased catalytic activity and higher susceptibility to an
accelerated proteasome-dependent degradation (Hnízda et al., 2012).
Several explanations have been proposed over the years for the effect of
the T191M mutation on the hCBS activity (Katsushima et al., 2006;
Urreizti et al., 2003, 2006a,b). Urreizti et al. speculated that mutation
T191M might interfered with the normal substrate-induced mobility of
the region 186-222 making it impossible for the hCBS to retain PLP
within the catalytic cavity (Urreizti et al., 2003, 2006a,b). In light of
our recent structural data (Ereño-Orbea et al., 2013a, 2014), it is rea-
sonable to think that this mutation likely imposes a steric hindrance
that severely distorts its environment (Fig. 9), thus impairing the entire
three-dimensional fold of the moveable subdomain and consequently the
conformational change associated with the aperture of the catalytic

cavity. This would explain the structural instability and extensive un-
folding caused by the mutation T191M (Hnízda et al., 2012), in both
the basal and activated states of hCBS. We hypothesize that a similar
scenario might occur in mutants V168M, I143M and E144K, which are
also located in this región (Fig. 9).

The structural data presented herein represents another step to-
wards understanding the molecular mechanism underlying the catalysis
and regulation of the CBS enzymes. Together with previously eluci-
dated molecular mechanism of allosteric regulation of CBS by AdoMet
(Ereño-Orbea et al., 2013a, 2014; McCorvie et al., 2014), herein de-
scribed substrate-induced closure of the catalytic site broadens our
knowledge and both will be instrumental in the rational design of drugs
modulating CBS activity.
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Fig. 7. The moveable subdomain in PLP enzymes. (A)
Structure of the basal (grey, PDB ID 4LOD) and activated
(pink, PDB ID 4PCU) conformation of the catalytic core of
hCBS. In the basal state, the moveable submotif remains in a
closed conformation (in grey) due to the presence of the
Bateman module (not shown) above the catalytic cavity.
Binding of AdoMet at the Bateman module triggers a mi-
gration of the latter from atop the catalytic cavity, thus
allowing the displacement of the moveable motif towards an
open conformation (pink). The shift is indicated with a blue
arrow. Although not represented, the artificial removal of
the Bateman module (Meier et al., 2001) exerts a similar
effect in hCBS, and facilitates the aperture of the moveable
motif. (B, C) In the absence of substrates in the catalytic
cavity, the moveable subdomain of (B) dCBS; (PDB ID 3PC2)
and (C) EhOASS (PDB ID 2PQM), adopts an open con-
formation (in yellow and blue slate, respectively) that
evolves towards a closed state (PDB IDs 3PC4 in blue marine
and 3BM5 in cyan, in B and C, respectively), when the
substrates enter the PLP cavity.
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Materials and Methods

Expression and purification of AmCBS

The pET-28a-C-AmCBS expression construct was prepared as de-
scribed previously (Oyenarte et al., 2012). Full-length AmCBS was ex-
pressed and purified following the protocols that were developed for
other CBS enzymes (Oyenarte et al., 2012).

Crystallization, X-ray diffraction data collection, phasing, and refinement

Crystals of AmCBS were obtained by the hanging-drop vapor dif-
fusion method at 293 K in 24-well VDX crystallization plates according
to the protocol described previously (Oyenarte et al., 2012). Drops

consisted of 0.5 μL protein solution mixed with 0.5 μL precipitant so-
lution (10% PEG 6000, 0.1M HEPES-NaOH pH 7.5, 5% (± )-2-methyl-
2,4-pentanediol) equilibrated over a reservoir volume of 0.5mL; the
protein concentration was 6mgmL−1. Single-crystals were cryopro-
tected with 25% (± )-2-methyl-2,4-pentanediol and flash frozen in li-
quid nitrogen. AmCBS data sets were collected at our in-house X-ray
platform using a MAR345 detector mounted on a Microstar-H rotating-
anode X-ray generator (Bruker), operated at 60 kV and 100mA, with
optics Helios and copper target (Cu Kα; λ=1.542 Å). The difficulties
found to grow suitable crystals prevented a subsequent data at Syn-
chrotron Facilities. Data were processed using the software HKL2000
(Otwinowski and Minor, 1997) or XDS (Kabsch, 2010).

The AmCBS structure was determined by molecular replacement
with the program PHENIX (Adams et al., 2010), using the crystal

Fig. 9. Pathogenic mutations located in the moveable sub-
motif of hCBS. (A) The pathogenic mutations located in the
moveable motif (the affected residues are in red) are dis-
tributed in the three main loops (L145-148, L171-174 and
L191-202) determining the access of substrates into the
catalytic cavity of hCBS (e.g. G148R, M173V, T191M,
D198V, P200L) or in the vicinity of these loops. The
Bateman module above the entrance of the PLP site is re-
presented in cyan. (B) Residues T191 and V168 are sur-
rounded by hydrophobic residues including M169, P170,
V189, P192, A195, H203 and V206.

Fig. 8. Substrate-induced closure of the catalytic cavity.
Structural superimposition of the catalytic core of AmCBS
(red) with the catalytic core of (A) apo-dCBS (yellow, PDB ID
3PC2) and (B) dCBS with bound aminoacrylate (blue PDB ID
3PC3) or with serine (3PC4, not represented). The loops
(and residues) involved in configuring the entrance to the
catalytic cavity are indicated with arrows. The moveable
submotif is enhanced in solid ribbons, whereas the static
domain is in transparent cartoon.
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structure of the dCBS (PDB 3PC2) as the initial search model. Crystal-
lographic refinement was carried out with PHENIX (Adams et al., 2010)
and REFMAC5 (Winn et al., 2003; Murshudov et al., 2011). Ra-
machandran statistics for the refined coordinates (residues in favored
region (%), number of outliers) were (97.27%, 0.11) for AmCBS. .The
final refinement statistics are summarized in Table 1.

The structural analysis of all enzymes discussed in this manuscript
was done using The PyMOL Molecular Graphics System (http://www.
pymol.org) and Coot (Emsley et al., 2010). Calculation of surfaces was
done with the PISA server (Krissinel and Henrick, 2007). The figures
showing three-dimensional protein structures were prepared with
PyMOL and CHIMERA (http://www.rbvi.ucsf.edu/chimera) (Pettersen
et al., 2004). Sequence alignments were done with Clustal W (Larkin
et al., 2007) and represented with CINEMA (Parry-Smith et al., 1998).

CBS specific activity measurements

The CBS activity in the classical reaction was determined by a
radioisotope assay using (14C(U)) L-serine as the labeled substrate, es-
sentially as described previously (Majtan et al., 2010).

Accession numbers

The atomic coordinates of AmCBS, and structure factors reported in
this paper have been deposited in the Protein Data Bank database,
under PDB ID code 5OHX.

Availability of supporting data

The crystal structures used in the analysis are available in the
Worldwide Protein Databank (http://www.wwpdb.org) under PDB IDs:
Apis mellifera CBS (AmCBS): 5OHX; Homo sapiens CBS (hCBS): 4L3V,
4L0D, 4L28, 4L27, 4PCU, 4COO, 1M54, 1JBQ; Drosophila melanogaster
CBS (dCBS): 3PC2, 3PC3, 3PC4; Entamoeba histolytica O-acetylserine
sulhydrylase (EhOASS): 2PQM, 3BM5, 4JBL, 4IL5, 4JBN; O-acetyl-L-
serine(thiol)lyase (OASTL); Escherichia coli threonine deaminase
(EcTD): 1TDJ and Salmonella typhimorium tryptophan synthase (StTS):
1BKS, 2J9X.
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