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Following cardiac injury, early immune cell responses are essential
for initiating cardiac remodeling and tissue repair. We previously
demonstrated the importance of β2-adrenergic receptors (β2ARs)
in the regulation of immune cell localization following acute car-
diac injury, with deficient leukocyte infiltration into the damaged
heart. The purpose of this study was to investigate the mechanism
by which immune cell-expressed β2ARs regulate leukocyte recruit-
ment to the heart following acute cardiac injury. Chemokine recep-
tor 2 (CCR2) expression and responsiveness to C-C motif chemokine
ligand 2 (CCL2)-mediated migration were abolished in β2AR knock-
out (KO) bone marrow (BM), both of which were rescued by β2AR
reexpression. Chimeric mice lacking immune cell-specific CCR2 ex-
pression, as well as wild-type mice administered a CCR2 antagonist,
recapitulated the loss of monocyte/macrophage and neutrophil re-
cruitment to the heart following myocardial infarction (MI) ob-
served in mice with immune cell-specific β2AR deletion. Converse
to β2AR ablation, β2AR stimulation increased CCR2 expression and
migratory responsiveness to CCL2 in BM. Mechanistically, G protein-
dependent β2AR signaling was dispensable for these effects,
whereas β-arrestin2–biased β2AR signaling was required for the
regulation of CCR2 expression. Additionally, activator protein 1
(AP-1) was shown to be essential in mediating CCR2 expression
in response to β2AR stimulation in both murine BM and human
monocytes. Finally, reconstitution of β2ARKO BM with rescued ex-
pression of a β-arrestin–biased β2AR in vivo restored BM CCR2 ex-
pression as well as cardiac leukocyte infiltration following MI. These
results demonstrate the critical role of β-arrestin2/AP-1–dependent
β2AR signaling in the regulation of CCR2 expression and recruitment
of leukocytes to the heart following injury.
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Healing following ischemic cardiac injury is highly regulated
by immune responses, with impairments or exacerbations in

inflammation leading to alterations in infarct expansion, remod-
eling, and ultimately cardiac function (1). Cells of the innate im-
mune system including monocytes/macrophages, mast cells, and
neutrophils play critical roles in infarct healing through tissue
phagocytosis and activation of reparative responses. Recruitment
and trafficking of these leukocytes to the heart following acute
injury occur through the action of chemokines on their receptors
to promote their migration to the site of injury (2), and have been
the focus of much research in recent years (1, 3).
Sympathetic activity is important for regulating immune responses,

primarily through the β2-adrenergic receptor (β2AR) subtype
(4–6). Recently, we showed that immune cell-expressed β2AR is
required for leukocyte recruitment to the heart following acute
myocardial infarction (MI), without which the heart cannot mount
a repair response, ultimately undergoing rupture (7). Because
chemokine receptors play a critical role in migration and infil-
tration of leukocyte populations, we hypothesized that immune
cell-expressed chemokine receptor activity and/or expression may
be altered in the absence of β2AR, thereby impairing leukocyte
migration to the injured heart.

The impact of immune cell-specific β2AR expression on che-
mokine receptor expression and leukocyte infiltration following
MI was investigated through the use of chimeric mice, wherein
bone marrow transplant (BMT) recipient mice received bone mar-
row from β2ARKO donor mice. Through the use of these chimeric
mice, we demonstrate that β2AR is critical in regulating chemokine
receptor 2 (CCR2) expression, and responsiveness to its ligand C-C
motif chemokine ligand 2 (CCL2), via a β-arrestin2 (βARR2)–biased
signaling pathway involving activator protein 1 (AP-1). These re-
sults highlight the importance of β2AR in regulating immune cell
expression of CCR2, thereby impacting the ability of leukocytes
to respond to acute cardiac injury.

Results
CCR2 Expression and Migratory Responsiveness Are Abolished in
β2ARKO BM. We recently observed decreased leukocyte infiltra-
tion into the hearts of chimeric mice lacking immune cell-
expressed β2AR following MI (7). Chemokines produced
following injury are important for recruitment of immune cells,
through their action on chemokine receptors. Thus, to assess
whether differences in chemokine receptor expression could
contribute to alterations in leukocyte infiltration in β2ARKO
BMT mouse hearts post-MI, reverse transcription–quantitative
PCR (RT-qPCR) was used to examine those known to play an
important role in immune cell migration following acute cardiac
injury (Table 1 and Table S1). β2ARKO BM had significantly
decreased expression of CCR2 and C-X-C motif chemokine re-
ceptor 4 (CXCR4) compared with WT BM. To test the impact of
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these altered chemokine receptor levels, we performed in vitro
migration assays, wherein β2ARKO BM displayed decreased mi-
gration toward CCL2 (MCP-1), the ligand for CCR2, with no
difference in migratory responses to CCL3 or C-X-C motif che-
mokine ligand 12 (CXCL12), a CXCR4 ligand (Fig. 1 A and B).
Lentiviral-mediated restoration of β2AR expression in β2ARKO
BM restored CCR2 expression to endogenous levels (Fig. 1C) as
well as the migratory response to CCL2, without affecting mi-
gration to CCL3 or CXCL12 (Fig. 1 A and B). CCR2 antagonism
blocked migration toward CCL2 following β2AR rescue but had
no effect on CCL3 and CXCL12 responses, confirming that this
response was CCR2-dependent.

Specific Ablation of CCR2 Reduces Leukocyte Recruitment to the
Heart Following MI. Based on our in vitro assessment of the im-
pact of β2AR deletion on CCR2 expression and BM cell migration,
we sought to determine whether CCR2 inhibition in vivo, either
pharmacologically or genetically, could recapitulate the impaired
leukocyte post-MI infiltration phenotype observed in β2ARKO
BMT mice (7). To assess this, WT mice underwent sham or MI
surgery followed by daily injections with vehicle or CCR2 antagonist
(2 mg·kg−1·d−1), or underwent irradiation and received WT,
β2ARKO, or CCR2KO BM 1 mo before surgery (Fig. S1). Analysis
of infarct size 4 d post-MI showed no differences between groups,
confirming similar surgical conditions for all groups of animals (Fig.
S2). Immunohistochemistry was performed on heart sections 4 d
postsurgery to quantify infiltration of immune cell populations in sham
hearts and the remote (Fig. S3), border (Fig. 2 and Fig. S2 E–H), and
infarct (Fig. S4) zones of MI hearts. Both pharmacological CCR2
antagonism (Fig. S2 E and F) and genetic CCR2 deletion (Fig. 2 A
and B) significantly reduced the infiltration of monocytes/macro-
phages (CD68+ cells) and neutrophils [myeloperoxidase (MPO)+

cells; Fig. 2 A and D and Fig. S2 E and H] to the border and infarct
(Fig. S4) zones of the heart following MI. These data recapitulate
those attained in β2ARKO BMT mice (Fig. 2A), where decreased
infiltration of monocytes/macrophages (Fig. 2B) and neutrophils
(Fig. 2D) into the border and infarct (Fig. S4) zones were observed
4 d following MI. Interestingly, unlike in the β2ARKO BMT mice,
CCR2 inhibition did not impact mast cell infiltration (tryptase+

cells; Fig. 2 A and C and Fig. S2 E and G). Further, post-MI sur-
vival, infarct size, and contractility did not differ between WT BMT
and CCR2KO BMT mice (Fig. S5A and Table S2), although
CCR2KO BMT mice had slightly less dilation following MI than
WT BMTmice. These results suggest that altered CCR2 expression
may be a major contributing, but not sole, factor to the decreased
leukocyte recruitment response to the injured heart in mice lacking
immune cell-expressed β2AR.

β2AR Stimulation Alters CCR2 Expression in a β-Arrestin2–Dependent
Manner. Because β2ARKO BM has decreased expression of
CCR2 compared with WT, we next sought to determine whether
pharmacological activation of β2AR reciprocally increases CCR2
expression. Thus, BM was isolated from WT C57BL/6 mice and

treated with the β2AR-selective agonist salbutamol (Sal). Expression
of CCR2 was quantified by RT-qPCR following Sal treatment over
time. CCR2 levels were increased 6 and 24 h following β2AR acti-
vation, demonstrating the ability to pharmacologically alter CCR2
levels using β2AR ligands (Fig. 3A). Salbutamol-induced CCR2
expression observed in WT BM was not observed in β2ARKO BM
(Fig. 3B), confirming the specificity of the response. Migration assays
were performed to determine whether β2AR-dependent increases in
CCR2 expression result in an enhanced functional response to
CCL2-mediated migration. Indeed, CCL2-induced migration of WT
BMwas augmented with Sal pretreatment (Fig. 3 C andD), whereas
β2ARKO BM did not migrate in response to CCL2, and Sal treat-
ment had no effect on this response (Fig. 3 E and F).
Because β2AR stimulation engages both G protein- and β-arrestin

(βARR)–dependent signaling cascades, either of which may regulate
downstream gene expression (8), we next sought to determine the
proximal mechanism through which β2AR stimulation increases
CCR2 expression. Thus, β2ARKO BM was infected with lentiviral
constructs encoding either WT β2AR (versus a GFP control

Table 1. Effects of β2ARKO on chemokine receptor expression

Chemokine receptor WT BMT β2ARKO BMT

CCR1 1.00 ± 0.20 1.06 ± 0.13
CCR2 1.00 ± 0.21 0.27 ± 0.07*
CCR5 1.00 ± 0.16 1.32 ± 0.18
CXCR1 1.00 ± 0.54 1.71 ± 0.56
CXCR2 1.00 ± 0.51 1.63 ± 0.62
CXCR4 1.00 ± 0.06 0.32 ± 0.02*
CXCR7 1.00 ± 0.03 0.90 ± 0.04
CXC3CR1 1.00 ± 0.12 1.09 ± 0.14
CD45 1.00 ± 0.22 0.90 ± 0.30

RT-qPCR analysis of changes in expression of chemokine receptor transcripts
in reconstituted WT or β2ARKO BM from transplanted mice. n = 4–8.
*P < 0.001 vs. WT BMT, two-tailed unpaired t test.
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Fig. 1. Effects of β2ARKO on BM migration in response to chemokines.
(A) Representative Hoechst staining (white) from a 4-h migration assay of
WT BM, β2ARKO BM, β2ARKO BM+lenti-GFP, and β2ARKO BM+lenti-β2AR in
response to CCL2 (100 ng/mL), CCL3 (100 ng/mL), or CXCL12 (10 ng/mL). A 1-h
pretreatment with a CCR2 antagonist (10 nM) was used to inhibit CCR2-
mediated migration. (B) Quantification of migration assay results. Values are
expressed as fold over vehicle-stimulated migration. n = 4–8; one-way ANOVA,
*P < 0.05 vs. WT BMT. (C) RT-qPCR was used to measure β2AR and CCR2 ex-
pression inWT and β2ARKO BM and β2ARKO BM that had been transduced with
either a GFP or β2AR lentivirus. n = 4–8; one-way ANOVA, *P < 0.05 vs. WT BMT.
Data are expressed as mean ± SEM. NS, nonstimulated; RQ, relative quantitation.
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lentivirus), β2ARTYY [lacking stimulatory G alpha subunit (Gαs)
coupling (9)], or β2ARGRK− [deficient in G protein-coupled re-
ceptor kinase (GRK)-mediated phosphorylation and βARR re-
cruitment (10)], and CCR2 expression was measured. Each
lentiviral construct induced β2AR expression in β2ARKO BM to
levels similar toWTBM, whereas GFP had no effect (Fig. S6A). Flag
andGFP expression was also assessed by immunoblot to confirm trans-
gene expression (Fig. S6B). WT β2AR and β2ARTYY restored CCR2
expression in β2ARKO BM, whereas neither GFP nor β2ARGRK−

altered CCR2 expression (Fig. 4A). Functionally, migration in re-
sponse to vehicle was unchanged by expression of any β2AR
construct (Fig. 4 B andC). However, corresponding to changes in
CCR2 expression, β2ARGRK− did not alter CCL2-mediated mi-
gration, whereas both WT β2AR and β2ARTYY had enhanced mi-
gration in response to CCL2 (Fig. 4 D and F). These results indicate
that β2AR-mediated changes in CCR2 are dependent proximally
upon βARR-dependent signaling. To confirm these results, BM was
isolated from βARR1KO and βARR2KO BM, and CCR2 expres-
sion and migration responses were examined following treatment
with Sal. As was observed in WT BM, Sal treatment increased CCR2
expression in βARR1KO BM (Fig. 5A) and resulted in enhanced
migration in response to CCL2 (Fig. 5 B and C). Conversely, Sal
treatment of βARR2KO BM was unable to increase CCR2 expres-
sion (Fig. 5A) or CCL2-mediated migration (Fig. 5 D and E). Thus,
βARR2-dependent β2AR signaling increases CCR2 expression, thereby
enhancing immune cell responsiveness to CCL2-mediated migration.
To further define the mechanism through which β2AR regu-

lates CCR2 expression, transcription factor activation was exam-
ined using EMSAs. We assessed DNA binding of transcription
factors reported to have putative binding sites in the CCR2
promoter and/or to regulate CCR2 expression [AP-1 (11), nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB)
(12), and nuclear factor of activated T cells (NFAT) (13)], as well
as cAMP response element binding protein (CREB) as a positive
control, because it is known to be regulated downstream of βAR
but with minimal impact on CCR2 transcription (14–16). AP-1
(Fig. 6A) and CREB (Fig. S7A) transcription factor binding were
both decreased in BM from β2ARKO mice when compared with
WT BM, whereas NF-κB (Fig. S7B) and NFAT (Fig. S7C) binding
were unaltered between groups. We subsequently tested whether
rescue of β2AR expression would restore transcription factor

binding in the β2ARKO BM and, as expected, canonical βAR-
sensitive CREB DNA binding was restored upon reexpression of
β2AR (Fig. S7D). Similarly, whereas GFP-infected β2ARKO BM
still displayed reduced AP-1 DNA binding similar to β2ARKO
alone (Fig. 6B), reexpression of WT β2AR restored AP-1 binding
to WT levels. To determine the importance of AP-1 activation in
the induction of CCR2 transcription, WT BM was pretreated with
the AP-1 inhibitor SR11302 before Sal treatment. Increased CCR2
expression in response to Sal treatment was blocked by pre-
treatment with SR11302 (Fig. 6C). Human monocytes were also
treated with Sal ± SR11302, yielding identical results to those
attained in mouse BM cells, highlighting the potential human rel-
evance of our findings (Fig. 6D).
To determine whether βARR-dependent β2AR signaling is

involved in the control of AP-1–dependent CCR2 expression, as
suggested from our results above, β2ARKO BM was infected
with the WT β2AR, β2ARTYY, and β2ARGRK− lentiviral con-
structs, or GFP control, and CCR2 expression was assessed.
With restoration of WT β2AR expression, Sal increased CCR2,
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Fig. 2. CCR2KO BMT reduces leukocyte infiltration into the heart followingMI.
(A) Representative CD68, tryptase, and MPO staining for the border zone of
hearts from WT C57BL/6 mice receiving WT, β2ARKO, or CCR2KO BMT that
underwent MI surgery. Arrowheads indicate positive staining. Insets show
higher magnification at 250×. (B–D) Quantification of CD68 (B), tryptase (C), and
MPO (D) staining for the border zone of 4-d post-MI hearts from WT, β2ARKO,
and CCR2KO BMT mice. n = 4–8; one-way ANOVA, †P < 0.01 vs. WT BMT, ‡P <
0.001 vs. WT BMT; ns, not significant. Data are expressed as mean ± SEM.
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Fig. 3. β2AR stimulation increases CCR2 expression and migration. (A) RT-
qPCR was used to measure CCR2 expression in WT BM treated with vehi-
cle (Veh) control or 1 μM Sal over time (3 to 24 h). n = 3–8; one-way
ANOVA, †P < 0.01, ‡P < 0.001 vs. Veh. (B) RT-qPCR was used to measure
CCR2 expression in WT and β2ARKO BM treated with Sal. n = 6; one-way
ANOVA, ‡P < 0.001 vs. Veh. (C) Representative Hoechst staining (white) from a
4-h migration assay of WT BM pretreated with vehicle or Sal and allowed to
migrate in response to CCL2 (100 ng/mL). (D) Quantification ofWT BMmigration
assay results. Values are expressed as fold over WT vehicle-stimulated migration.
n = 7–8; one-way ANOVA, *P < 0.05. (E) Representative Hoechst staining (white)
from a 4-h migration assay of β2ARKO BM pretreated with vehicle or Sal
and allowed to migrate in response to CCL2 (100 ng/mL). (F) Quantification
of β2ARKO BM migration assay results. Values are expressed as fold over WT
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as previously seen in WT BM, which could be prevented with
SR11302 pretreatment (Fig. 6E). GFP-infected cells were un-
responsive to Sal ± SR11302 (Fig. S7E). Similar to the WT
β2AR rescue, β2ARTYY-infected β2ARKO BM had increased
CCR2 expression following Sal treatment, which was blocked by
SR11302 (Fig. 6F); however, β2ARGRK−-infected β2ARKO BM
showed no alteration in CCR2 expression with either Sal or
SR11302 (Fig. S7F). These findings confirm that βARR2-dependent
β2AR signaling controls CCR2 expression via regulation of AP-1
in hematopoietic cells.

Restoration of β2AR-Mediated βARR Signaling in Vivo Reverses
Leukocyte Dysfunction Following MI. To determine whether resto-
ration of β2AR expression, in particular β2AR-mediated βARR
signaling, in β2ARKO BM could rescue the impaired cardiac
leukocyte recruitment observed in post-MI β2AR BMT mice,
β2ARKO BM was transduced with either the WT β2AR,
β2ARTYY, β2ARGRK−, or GFP control lentiviral constructs be-
fore BMT. β2AR transcript expression in β2ARKO BM follow-
ing reconstitution was approximately that of endogenous levels
for WT and mutant β2AR (Fig. S6C), which corresponded to
restoration of βAR membrane expression (Fig. S6D). Flag and
GFP expression was assessed by immunoblot to confirm transgene
expression in reconstituted BM (Fig. S6E). CCR2 expression was
restored with the reexpression of WT β2AR as well as with
β2ARTYY, but not in either GFP- or β2ARGRK−-transduced BM
(Fig. 7A). Analysis of the infarct size of animals showed similar
surgical conditions between groups (Fig. S8). Leukocyte levels in
the remote region (Fig. S9) were unchanged following MI;
however, correlating with restoration of CCR2 expression, im-
munohistochemistry for monocyte/macrophages, mast cell and
neutrophil infiltration to the border zone (Fig. 7 B–E), and in-
farct (Fig. S10) of the injured myocardium of WT β2AR and

β2ARTYY were rescued compared with those of β2ARKO+GFP
and β2ARGRK− BMT mice.

Discussion
Inflammatory processes are activated following acute cardiac
injury, including chemokine-induced recruitment of immune
cells to the site of injury, which are essential to mounting a re-
parative response and allowing subsequent healing (1). Sympa-
thetic activity is known to regulate inflammation, with β2AR
being the predominant adrenergic receptor subtype involved in
immunomodulation (4–6). Recent findings from our laboratory
have identified a critical role for hematopoietically expressed
β2AR in survival following MI, wherein a lack of β2AR on im-
mune cells resulted in decreased leukocyte infiltration to the
heart, failed scar formation, and cardiac rupture (7). Although
splenic retention of leukocytes played a role in the phenotype,
whether the diminished leukocyte recruitment to the injured
heart in the absence of immune cell-expressed β2AR involved an
alteration in the response to promigratory chemokines was not
determined. Thus, the purpose of this study was to determine
whether immune cell-expressed β2AR plays a key role in regu-
lating chemokine responsiveness and leukocyte infiltration fol-
lowing acute cardiac injury.
Because trafficking of immune cells to sites of inflammation

occurs through various chemokine receptors (2), we initially sur-
veyed the expression levels of a number of the receptors in WT
versus β2ARKO BM, finding that CCR2 and CXCR4 levels in
particular were significantly decreased. However, only CCR2
deficiency had a negative effect on BM cell migration in response
to its ligand CCL2. This was in the absence of deficiencies in
egress of cells from BM (7) that occur with global depletion of
CCR2 (17, 18). Although the importance of CCL2 as a major
chemoattractant of mononuclear cells to the ischemic heart has
been extensively studied, the results are often in conflict, with
both administration and inhibition of CCL2 showing improve-
ments and detrimental effects in the remodeling following MI
(19, 20). These discrepancies may be a result of the timing of
administration or inhibition, because short-term elevations in
CCL2 are protective whereas sustained elevations in CCL2
contribute to an enhanced progression toward heart failure (21–
24). Indeed, studies examining the involvement of CCR2 fol-
lowing cardiac injury have shown beneficial effects with CCR2
inhibition (25–27), wherein both global and monocyte-directed
RNAi-mediated deletion of CCR2 in mice that underwent MI
surgery resulted in improved left ventricular remodeling (25, 26).
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CCR2 is highly expressed on proinflammatory monocyte pop-
ulations and, although β2AR has been shown to modulate che-
motaxis, our findings are novel in that they directly link decreased
hematopoietic cell β2AR expression with a corresponding re-
duction in CCR2 levels and CCL2-dependent migration. Previous
studies have shown either no effect of sympathetic nervous system
(SNS) stimulation on CCR2 expression in peripheral blood
mononuclear cells (28) or decreased CCR2 expression in BM with
SNS stimulation (29). These differences may be due to the lack of

specificity of norepinephrine and epinephrine treatment and ac-
tivation of multiple adrenergic receptor subtypes. Further, β2AR
stimulation was previously shown in THP-1 human monocytic cells
to increase CCR2 expression and migration through an undefined
mechanism (30), whereas another study demonstrated that treatment
of THP-1 cells with cAMP-elevating agents, including PDE3 inhib-
itors and dibutyryl cAMP, decreased both CCR2 expression and
CCL2-mediated migration (31). These results may suggest that Gαs
protein-dependent β2AR signaling acts to repress CCR2 expression.
Consistent with these reports, using β2AR mutants lacking

the ability to either engage Gαs protein signaling (β2ARTYY) or
to be phosphorylated by GRK (β2ARGRK−), we identified GRK-
dependent β2AR signaling as the mechanism by which β2AR
stimulation enhances CCR2 expression. Additionally, using BM
cells from βARRKO mice, we demonstrated that βARR2, but
not βARR1, is specifically required for this effect. βARR2 has
been shown to regulate inflammatory responses in MI (32), as
βARR2KO mice had decreased survival after MI and decreased
infiltration of macrophages to the infarct following MI, similar to
our findings. βARRs are known to be involved, either directly or
indirectly, in the regulation of a number of transcription factors
that could regulate CCR2 gene transcription, including AP-1 and
NF-κB (33–37). Although the role of AP-1 has been minimally
studied following MI (38, 39), it plays a well-established role in
inflammation (40). We have demonstrated that βARR2-dependent
β2AR signaling via AP-1 is required for CCR2 up-regulation in
response to sympathetic stimulation, and that restoration of
GRK/βARR-dependent β2AR signaling in immune cells rescues
CCR2 expression, migration in response to CCL2, and cardiac
infiltration following MI in vivo.
Although we show in our study that CCR2 deficiency in im-

mune cells reduces their capacity for chemotaxis and infiltration
to the heart post-MI, this deficiency was limited to the monocyte/
macrophage and neutrophil populations in vivo, whereas mast
cell infiltration was unchanged. This is in contrast to our pre-
viously reported study in which β2ARKO chimeric mice had
impairment in cardiac recruitment of all three cell types (7).
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Further, in our current study, we did not observe an altered
progression toward heart failure in CCR2KO BMT mice, which,
coupled with the positive outcome of CCR2 inhibition in the
aforementioned studies (25, 26) versus the catastrophic impact
of immune cell-specific β2AR deletion on cardiac remodeling
following MI we previously reported (7), suggests that β2ARKO
chimeric mice likely have additional factors that contribute to
their observed post-MI phenotype. For instance, we previously
showed that enhanced vascular cell adhesion molecule 1 ex-
pression was associated with splenic retention of leukocytes in
β2ARKO BMT mice and that splenectomy partially restored
cardiac leukocyte infiltration following MI (7), demonstrating
that even with diminished CCR2 expression and responsiveness,
β2AR-deficient leukocytes retain some capacity to traffic to sites
of injury in vivo. Thus, it may be beneficial to further investigate
the role of CXCR4 expression, as well as a larger number of
chemokine receptors and secreted factors from individual
immune cell populations, to more fully elucidate how β2AR con-
trols these processes. The potential existence of multiple β2AR-
dependent mechanisms that could influence distinct immune cell
populations suggests a widespread impact of β2AR modulation on
the regulation of early immune responses that could be targeted to
alter post-MI recovery.
In summary, we have identified a role for β2AR in the regu-

lation of immune cell-specific CCR2 expression, where a lack of
β2AR expression in leukocytes results in decreased CCR2 ex-
pression, impaired migration to CCL2 in vitro, and decreased
monocyte/macrophage and neutrophil cardiac infiltration fol-
lowing MI in vivo. Lentiviral-mediated reexpression of β2AR in

β2ARKO BM before transplantation restored CCR2 expression
and BM migration through a βARR2-dependent pathway. These
results demonstrate an immunomodulatory role for βARR-biased
β2AR signaling in early immune responses following MI, which
could be targeted to promote reparative processes while pre-
venting chronic inflammatory events that are detrimental to
healing. Further, because β-blockers are commonly used in pa-
tients around the time of acute cardiac ischemia, our results
suggest they could impact the leukocyte-mediated repair re-
sponse, warranting further investigation.

Materials and Methods
Surgery and Assays. Detailed descriptions of coronary artery occlusion sur-
gery, echocardiography, human monocyte cell culture, reverse transcription–
quantitative PCR, migration assay, histological analysis, radioligand binding,
immunoblot analysis, bone marrow transplant, bone marrow isolation, and
lentiviral infection are provided in SI Materials and Methods. All animal pro-
cedures were performed in accordance with the guidelines of the Institutional
Animal Care and Use Committee at the Temple University School of Medicine.

Statistical Analysis. Data presented are expressed as mean ± SEM. Statistical
analysis was performed using unpaired Student t tests, one-way ANOVA
with a Tukey’s multiple comparison test, or two-way repeated-measures
ANOVA where appropriate using Prism 5.0 software (GraphPad Software),
with P values indicated in the figure legends.
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