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Lear T, Dunn SR, McKelvey AC, Mir A, Evankovich J, Chen
BB, Liu Y. RING finger protein 113A regulates C-X-C chemokine
receptor type 4 stability and signaling. Am J Physiol Cell Physiol 313:
C584–C592, 2017. First published October 4, 2017; doi:10.1152/
ajpcell.00193.2017.—As an �-chemokine receptor specific for stro-
mal-derived-factor-1 (SDF-1, also called CXCL12), C-X-C chemo-
kine receptor type 4 (CXCR4) plays a vital role in chemotactically
attracting lymphocytes during inflammation. CXCR4 also regulates
HIV infection due to its role as one of the chemokine coreceptors for
HIV entry into CD4� T cells. Chemokine receptors and their signal-
ing pathways have been shown to be regulated by the process of
ubiquitination, a posttranslational modification, guided by ubiquitin
E3 ligases, which covalently links ubiquitin chains to lysine residues
within target substrates. Here we describe a novel mechanism regu-
lating CXCR4 protein levels and subsequent CXCR4/CXCL12 sig-
naling pathway through the ubiquitination and degradation of the
receptor in response to ligand stimulation. We identify that an un-
characterized really interesting new gene (RING) finger ubiquitin E3
ligase, RING finger protein 113A (RNF113A), directly ubiquitinates
CXCR4 in cells, leading to CXCR4 degradation, and therefore dis-
rupts the signaling cascade. We determined that the K331 residue
within CXCR4 is essential for RNF113A-mediated ubiquitin conju-
gation. Overexpression of RNF113A significantly reduces CXCL12-
induced kinase activation in HeLa cells, whereas RNF113A knock-
down enhances CXCL12-induced downstream signaling. Further,
RNF113A expression and silencing directly affect cell motility in a
wound healing assay. These results suggest that RNF113A plays an
important role in CXCR4 signaling through the ubiquitination and
degradation of CXCR4. This mechanistic study might provide new
understanding of HIV immunity and neutrophil activation and motil-
ity regulated by CXCR4.
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C-X-C CHEMOKINE RECEPTOR type 4 (CXCR4) is a G protein-
coupled receptor on the cellular membrane and is expressed
across many tissue types. It serves as the main receptor for the
chemokine stromal cell-derived factor 1 (CXCL12). The bind-
ing of CXCL12 leads to signaling through several G protein-
dependent pathways (4). Specifically, this activates G protein

subunits and phosphorylates SRK kinases, leading to signaling
through the ERK pathway (43). This signaling pathway is
critical for cellular processes such as chemotaxis and prolifer-
ation. Concurrently, CXCR4 signaling activates phosphatidy-
linositide 3-kinases, initiating a signaling cascade of second
messengers resulting in downstream activation of RAC-� ser-
ine/threonine-protein kinase (Akt) and mitogen-associated pro-
tein kinase (35, 48). As with ERK, these kinases are important
regulators of cell adhesion, migration, and survival. Following
ligand binding, CXCR4 is extensively phosphorylated by G
protein-coupled receptor kinases, causing desensitization, and
its internalization (3, 42). Following internalization, CXCR4
can be recycled back to the membrane or sorted to endosomes
for degradation.

Dysregulated CXCR4 activity exists in human pathologies.
CXCR4 was initially characterized as one of two coreceptors
aiding HIV-1 viral entry into cells (25). Classically, HIV-1
uses the CD4-lymphocyte receptor as the main coordinating
anchor, with CCR5 or CXCR4 receptors as a secondary recep-
tor. Use of CXCR4 as a coreceptor is primarily associated with
the later stages of infection, for reasons that remain unclear
(15). Genetic deletion of CXCR4 in CD4� T cells in vitro
confers resistance to HIV-1 infectivity, underscoring the im-
portance of the receptor (22). However, direct antagonist in-
hibitors of CXCR4 have not proven clinically meaningful,
despite its importance as a coreceptor (45). This suggests other
avenues of inhibition need to be explored. CXCR4 plays a role
in patients with comorbidities as well. Macrophages from
patients with tuberculosis show higher pulmonary expression
of CXCR4, which leads to an acceleration of HIV infection
(21). While CXCR4 functions as a coreceptor most notably for
T-cell invasion, pulmonary epithelia are susceptible to
CXCR4-mediated HIV infection (8). Due to the chemotactic
consequences of its signaling, CXCR4 is implicated in cancer
progression (6). Li et al. (28) have demonstrated that CXCR4
is linked to HER2-mediated breast cancer metastasis. Specifi-
cally, they observed that HER2 prevents ligand-induced
CXCR4 degradation and increases the protein expression of
CXCR4, thus facilitating cell migration. Moreover, depletion
of CXCR4 through siRNA can block the ability of breast and
liver cancer cells to migrate in vitro (29, 41). Overall, CXCR4
protein level is known to be elevated in cancerous tissue and to
be associated with worsened patient outcomes (49). Thus,
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CXCR4 protein expression, regulation, and stability are di-
rectly tied to disease progression.

There are multiple mechanisms regulating the expression
and stability of CXCR4 (4). CXCR4 is regulated by factors
such as nuclear respiratory factor-1 (NRF-1), SP-1, and nega-
tively regulated by YY1 (39). This has disease implications, as
HIV hijacks NRF-1 to increase CXCR4 expression, and thus
infectivity. Posttranslational modifications also regulate CXCR4
stability. The extensive phosphorylation following ligand binding
serves as phospho-degrons for subsequent ubiquitination and
degradation (3). In fact, ligand binding promotes ubiquitina-
tion, leading to internalization and sorting prior to recycling
(31). It has been reported that a HECT-domain ubiquitin E3
ligase, ITCH (E3 ubiquitin-protein ligase Itchy homolog),
mediates ubiquitination of CXCR4 (32). ITCH specifically
interacts with arrestins in the endosomal sorting complex
required for transport (ESCRT) machinery, leading to CXCR4
ubiquitination and endosomal transport to the lysosome (2).
However, researchers have observed other E3 ligases to ma-
nipulate CXCR4, specifically E3 ubiquitin-protein ligase Del-
tex-3L (DTX3L), which antagonizes ITCH activity and main-
tains CXCR4 stability (20). Regulation of CXCR4 degradation
is a highly regulated and complex process (24). These recent
discoveries suggest that multiple proteins and multiple ubiqui-
tin E3 ligases work to regulate CXCR4 stability.

Ubiquitination is the main mechanism of targeting cellular
proteins for degradation through the lysosome or proteasome
(19). A series of protein complexes facilitate the conjugation of
ubiquitin to target proteins in an enzymatic cascade. Initially,
the E1 ubiquitin activating enzyme transmits a ubiquitin moi-
ety to one of several dozen types of ubiquitin E2 conjugating
enzymes via a high-energy thioester bond. The charged ubiq-
uitin~E2 complex is then guided by a ubiquitin E3 ligase
protein or complex to the target substrate, and ubiquitin is
delivered onto the target lysine residue. There are �600 E3
ligases known and estimated to exist in the human proteome,
and they are organized into several families (36, 40). Specifi-
cally, the largest family of E3 ligases, really interesting new
gene (RING) E3 ligases remains poorly characterized. RING
E3 ligases contain a RING domain, which is a sequence of
cysteine and histidine residues that function to chelate two zinc
ions (37). This charged domain serves as a binding interface
for E2 enzymes and orients the coordinated E2 into a position
to facilitate ubiquitination of substrate proteins (13).

We screened a library of RING E3 ligases to assay their
activity on CXCR4 stability and observed a previously unchar-
acterized E3 ligase, RING finger protein 113A (RNF113A),
mediates CXCR4 degradation. Here we report RNF113A is a
bona-fide RING E3 ligase that directly binds CXCR4, shortens
CXCR4 protein half-life, downregulates CXCR4 signaling,
and impairs cellular motility. This study represents a new
means in regulating CXCR4 stability.

MATERIALS AND METHODS

Antibodies. Anti-CXCR4 antibody (UMB2) (ab124824) was from
Abcam. Horseradish peroxidase-conjugated secondary antibodies
(170-515/6) were from Bio-Rad. Antibodies against ERK1/2 (137F5;
4695), pERK1/2 (Thr202/Tyr204) (20G11; 4376), pAkt (Ser473)
(D9E; 4060), and Akt (40D4; 2920) were from Cell Signaling Tech-
nologies. Anti-ubiquitin antibody (VU101) was from Life Sensors.
Antibodies against RNF113A (V-25, sc-133965) were from Santa

Cruz Biotechnology. Anti-actin antibody (A5441) was from Sigma
Aldrich. Anti-V5 Tag (R960-25) was from Thermo Fisher Scientific.

Materials. QuikChange II XL Site-Directed Mutagenesis Kit
(200522) was from Aglient Technologies. Eagle’s minimum essential
medium (EMEM) (30-2003) and HeLa cells (CCL-2) were from
ATCC. Thermal Cycler Life ECO (BYQ6078) was from BIOER
Technology. Cytation5 Imager was from BioTek. Cycloheximide
(BML-GR310) was from Enzo. Plasmids (pLKO.1) encoding shRNA
against RNF113A were from GE Dharmacon. FBS (100-106) was
from Gemini. DNA sequencing was performed at Genewiz. Phusion
High-Fidelity DNA Polymerase (M0530) was from NEB. TnT T7
Quick Coupled Transcription/Translation System (L1170) was from
Promega. Recombinant hCXCL12 (350-NS-010) was from R&D
Systems. Agar (A5306) and XtremeGene HP (XTGHP-RO ROCHE)
were from Sigma Aldrich. HisPur Ni-NTA Magnetic Beads (88831),
PureLink Quick Plasmid Miniprep Kit (K210010), Pierce Protein A/G
Magnetic Beads (88802), and pcDNA3.1D V5/HIS/TOPO kit
(K490040) were from Thermo Fisher Scientific.

Cell culture. HeLa cells were cultured in Eagle’s minimum essen-
tial medium (ATCC) supplemented with 10% fetal bovine serum
(EMEM-10). Cell line morphology was monitored via microscopy
and immunoblotted for multiple markers. Mycoplasma contamination
was checked using the MycoAlert Mycoplasma Detection Kit (Lonza,
Switzerland). For plasmid overexpression in HeLa cells, plasmids
were combined with XtremeGene HP kit following manufacturer’s
protocol. After 24 h, cells were treated with CXCL12 (6 nM) or
cycloheximide (CHX; 50 �g/ml) for the indicated times. For
RNF113A silencing studies in HeLa cells, scrambled shRNA control
and RNF113A shRNA were transfected into cells for 48 h using
XtremeGene HP kit following the manufacturer’s protocol. Exposed
cells were collected and processed for immunoblotting.

Cloning and mutagenesis. All wild-type (WT) and mutant CXCR4,
RNF113A, and RING E3 ligase plasmid constructs were generated
using PCR-based approaches using appropriate primers and were then
subcloned into a pcDNA3.1D/V5-His vector (9, 34). Point mutants
were generated using the QuikChange II XL kit (Aglient). All plasmid
constructs were sequence-confirmed against NCBI reference se-
quences before experimentation, (e.g., NM_001008540 for CXCR4,
NM_006978 for RNF113A).

Western blotting. Cell sample lysates were collected and digested
in buffer A (150 mM NaCl, 50 mM Tris, 1.0 mM EDTA, 2 mM
dithiothreitol, 0.025% sodium azide, and 1 mM phenylmethylsulfonyl
fluoride) on ice. Lysates were prepared by brief sonication at 4°C.
Insoluble cellular debris was precipitated through centrifugation at
15,000 g for 10 min at 4°C. Lysate supernatant was normalized for
protein concentration and diluted in denaturing loading buffer, with a
final 1� formulation of: 50 mM Tris·HCl (pH 6.8), 2% SDS, 10%
glycerol, and 100 mM DTT. Samples were resolved via SDS-PAGE
prior to immunoblotting. Signal was detected via chemiluminescence
on a Kodak Imaging Station. Densitometry was calculated via ImageJ
(National Institutes of Health, Bethesda, MD).

HIS-pull down. Full-length CXCR4-HIS-V5 plasmid was overex-
pressed in HeLa cells without and with coexpression of tagless
RNF113A using the above protocol. Following 18 h of expression,
cells were exposed to vehicle or CXCL12 (6 nM) for 1 h, before
collection and lysis of cells. Clarified cell lysate was incubated with
HisPur Ni-NTA agarose resin for 1 h at 25°C. Resin pull-downs were
washed before elution at 70°C in 1� denaturing loading buffer and
subsequent immunoblot analysis.

In vitro protein-binding assays. CXCR4 protein was immunopre-
cipitated from 1 mg HeLa cell lysate using CXCR4 antibody (rabbit)
and coupled to protein A/G agarose resin. CXCR4 beads were then
incubated with in vitro synthesized products (50 �l) expressing
RNF113A-V5 deletion mutants. After washing, the proteins were
eluted and processed for V5 immunoblotting. Similarly, RNF113A
protein was immunoprecipitated from HeLa cell lysate using
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RNF113A antibody (rabbit), and subjected to binding against V5-
tagged CXCR4 mutants.

RNF113A shRNA knockdown. pLKO.1 plasmids encoding nontar-
geting control (RHS6848) and shRNA against RNF113A were derived
from the RNAi Consortium (TRC-Hs1.0, human) and purchased from
GE Dharmacon. Mature antisense sequences are as follows: shRNA no.
1 (TRCN0000033729): TTTCCGGTCGAACCACAGTGC; shRNA no.
2 (TRCN0000033730): TAGCAATCAATTCTTTCGCTG; shRNA no. 3
(TRCN0000033731): TATCATTGGATTGTGGGTCAC; shRNA no. 4
(TRCN0000033732): AAAGATGGCTTGTGCATCGCG; and shRNA no.
5 (TRCN0000033733): ATTGAAGACGCCATTGGTCTG. Plasmids en-
coding shRNA were delivered to cells using transfection protocols
described above.

Cellular migration assay. HeLa cells were transfected with empty
plasmid, RNF113A-V5, control shRNA, or shRNA against RNF113A
as described above. Transfected cells were seeded in six-well plates to
80–90% of confluence and starved for 24 h before scratching the
monolayer with a pipette tip. CXCL12 (12 nM) was added to
wounded monolayer immediately following injury and replaced every
24 h. Images were collected at 48 and 72 h post scratch. Images were
collected with �4 objective using BioTek Cytation5 Imager.

Statistical analysis. Statistical comparisons were performed with
means � SE for continuous variables. All data were statistically
analyzed by the indicated statistical tests with P � 0.05 indicative of
statistical significance. All analyses were performed using GraphPad
Prism 6.

RESULTS

RNF113A affects CXCR4 stability. We prepared a library of
over 200 E3 ligases and expressed them in HeLa cells to assess
their effect on the protein abundance of CXCR4 (9, 27). A
representative panel of E3 ligase overexpression is shown in
Fig. 1A. We observed that RNF113A expression decreases
protein abundance of CXCR4 (Fig. 1A). Ligand binding is
known to stimulate CXCR4 ubiquitination and degradation
(31). To examine the role of RNF113A and CXCL12 on
CXCR4 ubiquitination, we coexpressed HIS-tagged CXCR4
with RNF113A before treatment with CXCL12 (6 nM) for 1 h.
Lysates were subjected to HIS pull-down, washed, and the
eluate was processed for ubiquitin immunoblotting (Fig. 1B).
We recapitulated that CXCR4 protein is degraded upon
CXCL12 exposure, as well as increased ubiquitin signal with
pulled-down CXCR4 following CXCL12 treatment. Further-
more, we observed an even greater degradation and greater
ubiquitin signal upon coexpression of RNF113A, suggesting
that RNF113A aids in CXCR4 ubiquitination and degradation
in response to CXCL12 stimulant (Fig. 1B). Next, we observed
that the overexpression of RNF113A resulted in the decrease in
CXCR4 protein level in a dose-dependent manner, but not by
its paralogue RNF113B (Fig. 1C). RING E3 ligases have a
canonical RING domain containing critical Cys and His resi-
dues for zinc coordination (37). To validate the activity of
RNF113A, we mutated two critical residues within the RING
domain of RNF113A: C262 and C277. We observed that
C262A and C277A mutants were unable to reduce CXCR4
protein levels as compared with wild-type RNF113A (Fig. 1D).
Upon the blockage of protein synthesis by exposure to cyclo-
heximide (CHX), the overexpression of RNF113A led to an
accelerated degradation of CXCR4, compared with the empty
vector control group (Fig. 2A). Silencing of RNF113A via
several different shRNA all led to the increased CXCR4 protein
abundance (Fig. 2B), and combination of shRNA silencing of

RNF113A and CHX treatment significantly slowed down
CXCR4 protein turnover (Fig. 2C).

CXCR4 K331 is critical for RNF113A-mediated degradation.
We next sought to identify a potential ubiquitin lysine site
within CXCR4. The intracellular carboxy-terminal tail of
CXCR4 contains several lysines. Previous reports have shown
that the CXCR4 triple mutant of lysine to arginine (lysines 327,
331, and 333) is resistant to ubiquitin-mediated degradation
(31, 38). We further constructed single CXCR4 K-R point
mutants and observed K331R to be resistant to RNF113A-
mediated degradation (Fig. 2D). As a negative control, K310R
remained susceptible to RNF113A-dependent degradation.
Further, K331R CXCR4 exhibited a prolonged half-life during
CHX chase, compared with CXCR4 wild-type (WT) and
K310R mutant (Fig. 2E).
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Fig. 1. RING ubiquitin E3 ligase RNF113A facilitates C-X-C chemokine
receptor type 4 (CXCR4) degradation. A: RING E3 ligase screening. A library
of RING E3 ligases were transfected in HeLa cells before CXCR4 immuno-
blotting. CXCR4 densitometry relative to LacZ is shown beneath immunoblot.
B: HeLa cells were cotransfected with CXCR4-HIS and RNF113A before
CXCL12 treatment (6 nM, 1 h.), HIS pull-down, and immunoblotting. C, top:
V5-tagged RNF113A and its paralogue RNF113B were expressed in HeLa
cells in a dose course before CXCR4 immunoblotting. Bottom: densitometry
on CXCR4 protein signal normalized to 0 �g for each treatment. Data
represent mean values � SE (n 	 4, *P � 0.05, significant compared with
RNF113A, two-way ANOVA, Bonferroni multiple comparisons). D, top: point
mutants of RNF113A RING domain (V5-tagged) were expressed in HeLa cells
before CXCR4 immunoblotting. Bottom: densitometry on CXCR4 protein
signal normalized to 0 �g for each treatment. Data represent mean val-
ues � SE (n 	 4, *P � 0.05, significant compared with RNF113A WT signal
at indicated dose, two-way ANOVA, Bonferroni multiple comparisons).
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RNF113A binds CXCR4 through a positively charged region.
E3 ligases are known to target substrates through specific
motifs on the E3 ligase and the target substrate (27, 46). To
further characterize the interaction of RNF113A and CXCR4,
we employed a reductionist mapping approach to elucidate the
putative binding regions within RNF113A and CXCR4. A
series of amino-terminal and carboxy-terminal truncation mu-
tants of RNF113A were prepared, in vitro expressed, and
subjected to CXCR4 binding (Fig. 3A). We observed a loss of
association between CXCR4 immunoprecipitate and
RNF113A when the 15-residue region between 50 and 65 was
deleted (Fig. 3B). Finer mapping experiments narrowed this
region down to 10 residues (Fig. 3C). The RNF113A construct
with an internal deletion of these 10 residues largely decreased
the interaction between RNF113A and CXCR4 (Fig. 3D), and
its overexpression in HeLa cells failed to induce CXCR4
degradation (Fig. 3, E and F). This led to the conclusion that
this 10-residue region is the putative binding site. Conversely,
we designed carboxy-terminal truncation mutants of CXCR4
and conducted binding assays with immunoprecipitated
RNF113A (Fig. 3G). We observed a loss of association be-

tween RNF113A immunoprecipitate and CXCR4 when the
region between residues 322 and 333 was deleted (Fig. 3H). As
serines- 324 and 325 within this region have been described to
be phosphorylated (3), we hypothesized that they are critical
for RNF113A association. Mutation of these serines to alanines
prevented the binding of CXCR4 to RNF113A (Fig. 3I).
However, as a positive control, deletion of the final 19 residues
of CXCR4 preserved its binding affinity to RNF113A (Fig. 3I).

RNF113A regulates CXCR4 signaling. Next, we investi-
gated the effect of RNF113A on the CXCR4 signaling
pathway. HeLa cells were transfected with RNF113A and
treated with 6 nM CXCL12 in a time course before immu-
noblotting. RNF113A expression accelerates CXCL12-me-
diated degradation of CXCR4 (Fig. 4A). Further, RNF113A
expression decreased the activation of downstream kinases
in CXCR4 signaling, specifically the phosphorylation of
Akt1 and ERK1/2, without affecting total kinase levels (Fig.
4A). Next, we silenced RNF113A in HeLa cells before
CXCL12 treatment. We observed RNF113A depletion led to
increased CXCR4 protein signal. Further, RNF113A deple-
tion increases the activation of downstream kinases in
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CXCR4 signaling, specifically the phosphorylation of Akt1
and ERK1/2 (Fig. 4B).

RNF113A affects cell motility. Finally, we investigated the
functional role of RNF113A on cellular motility through its
regulation of CXCR4. The CXCR4 signaling cascade mediates
cellular motility, especially in the presence of CXCL12. HeLa
cells were transfected with RNF113A-V5 plasmid or shRNA
against RNF113A and were seeded to a density of 80–90%.

Confluent cells were starved and wounded using 200 �l pipette
tip to create a 400 �m gap in the monolayer. Additionally, cells
were exposed to CXCL12 (12 nM) during course of healing.
The monolayer was imaged and gap closure was quantified
(n 	 3–4). RNF113A overexpression significantly precluded
gap closure, compared with empty plasmid (Fig. 4C). More-
over, treatment with CXCL12 resulted in a significantly in-
creased gap closure with empty plasmid cells. However, com-
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pared with CXCL12 treatment, additional overexpression of
RNF113A only slightly increased gap closure, and only closely
within significance (P 	 0.0458). From these observations, we
conclude that RNF113A expression affects cell motility
through regulating CXCR4. As a complementary assay, we
used shRNA to silence RNF113A before wound healing assay
(Fig. 4D). We further confirmed that CXCL12 enhanced gap
closure among the control shRNA plasmid group. Furthermore,
additional depletion of RNF113A significantly increased gap
closure, compared with CXCL12 treatment alone.

These data demonstrate that RNF113A is a negative regu-
lator of CXCR4 protein stability, signaling, and CXCR4-
mediated cellular motility.

DISCUSSION

Here we report a new mechanism in the regulation of
CXCR4 protein stability. We observed that the RING ubiquitin

E3 ligase RNF113A promotes CXCR4 degradation, impairs
downstream signaling, and affects cell motility. Depletion of
RNF113A through shRNA preserves CXCR4 protein level,
extends CXCR4 protein half-life, and enhances CXCR4 sig-
naling. CXCR4 has been shown to be monoubiquitinated,
specifically by ubiquitin E3 ligase ITCH, leading to its endo-
somal sorting and degradation (4, 32). However, polyubiquiti-
nation of CXCR4 has also been observed and is suggested to
play a role in immune cell aging (5, 26). We demonstrated that
RNF113A expression and CXCL12 treatment can increase
high-molecular-weight ubiquitin signal of CXCR4 compared
with control (Fig. 1B). This suggests that RNF113A facilitates
the polyubiquitination of CXCR4.

The ubiquitin system is a critical mediator of the dynamics
of cellular motility and migration (44). Specifically, RING E3
ligases, such as inhibitors of apoptosis, can both positively or
negatively regulate cell migration through the ubiquitination of
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is shown beneath immunoblots. B: HeLa cells were
transfected with plasmid encoding shRNA targeting
RNF113A before treatment with CXCL12 (6 nM)
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substrates including plasma membrane surface proteins or
members of the signaling cascade (14). We observed that
RNF113A overexpression attenuates CXCL12-CXCR4-depen-
dent activation of Akt and ERK, kinases classically associated
with cellular movement (Fig. 4A). Conversely, silencing of
RNF113A enhanced Akt and ERK activation (Fig. 4B).
RNF113A mediation of CXCR4 degradation also has func-
tional consequences. Cells with overexpressed RNF113A were
less able to close the gap in a wound healing assay relative to
empty vector plasmid (Fig. 4C). However, among cells with
RNF113A overexpression, the difference in gap closure be-
tween untreated and CXCL12-treatment trends toward insig-
nificance (P 	 0.0458). This suggests that RNF113A-express-
ing cells are less sensitive to CXCL12-stimulated motility,
possibly due to RNF113A-mediated degradation of the primary
CXCL12 receptor, CXCR4. Manipulation of CXCR4 signaling
through antagonist inhibition or siRNA silencing has been
shown to affect cellular motility in a wound healing assay (17,
41). Further, CXCL12 treatment can accelerate wound healing
(17). When RNF113A is silenced, which leads to the increased
CXCR4 stability and abundance, cells exhibit a stronger re-
sponse to CXCL12, with enhanced gap closure relative to
control shRNA treatment (Fig. 4D).

G protein-coupled receptors and chemokine receptor signal-
ing are heavily regulated by the stability of the receptor,
specifically through posttranslational modification. Phosphor-
ylation by G protein-specific kinases has been known to be a
main regulator through desensitization. However, ubiquitina-
tion is increasingly understood to be a potent regulator of
stability and downstream function (33). Indeed, several ubiq-
uitin E3 ligases are known to regulate the function and signal-
ing of CXCR4.

Substrates fated for ubiquitination are often characterized by
specific targeting sequences that aid ubiquitin E3 ligases in
identification and association. Specifically, protein binding
motifs involving phosphorylation have proven critical for E3-
substrate interaction (27, 46). Protein binding motifs have been
shown to be critical in engaging CXCR4. Previous research has
shown that ITCH binds CXCR4 with WW-motifs, which are
binding regions with proline-rich affinity (1). We observed
RNF113A to have a positively charged 10-residue region
necessary for binding to CXCR4 (Fig. 3A). Further, mutation
of critical serine residues of CXCR4, known to be phosphor-
ylated and thus negatively charged, led to decreased associa-
tion with RNF113A (Fig. 3I). These mechanistic studies sug-
gest a complementary charge-dependent interaction facilitating
the association between E3 ligase and substrate. Understanding
of the mechanistic underpinnings of association will serve as
the basis for future structure-based small molecule drug devel-
opment. As a coreceptor for HIV-1, depletion of CXCR4
protein would be beneficial to prevent viral entry, similar to
drug development efforts in antagonizing CCR5 (18). Previous
efforts to chemically target CXCR4 with direct antagonism
suffered from significant off-targeting effects (45). An alterna-
tive pathway of inhibition may avoid such off-targeting issues.
Further, inhibitors of CXCR4 have shown promise in slowing
cancer progression (12). Enhancing RNF113A-CXCR4 inter-
action or prolonging RNF113A half-life may show efficacy in
several CXCR4-related pathologies and potentially have ther-
apeutic benefits.

RNF113A may be working in concert with other proteins or
E3 ligases. Arrestin-2 has been shown to cooperate with ITCH
in promoting ubiquitination of CXCR4, leading to its degra-
dation (2, 30). Conversely, Holleman and Marchese (20) de-
scribed antagonism between the RING E3 ligase Deltex-3L
(DTX3L) and ITCH, as DTX3L inhibits ITCH ubiquitin ligase
activity toward CXCR4. Similarly, the downstream kinase
CISK has been shown to inhibit ITCH activity in degrading
CXCR4 (47). Interestingly, we observed that RNF113A pro-
tein signal also decays during cyclohexamide chase (Fig. 2A),
suggesting that RNF113A protein stability is subject to regu-
lation. We have observed a similar multiple E3 ligase relation-
ship, as F-box only protein 3 (FBXO3) regulates F-box/LRR-
repeat protein 2 (FBXL2), leading to pleiotropic cellular and
pathological consequences (7). Substrates have been shown to
be regulated by a variety of ubiquitin E3 ligases depending on
the specific spatiotemporal environment, and in response to
discrete stimuli, a classic example being the ubiquitin-medi-
ated regulation of p53 (23). It is possible that the regulation of
CXCR4 by RNF113A works within a comparable regulatory
framework.

Aside from this study, the function of RNF113A remains
unclear. Bioinformatics studies predict a RING domain in
RNF113A (16). We observed that mutation of critical RING
residues rescues substrate CXCR4 from degradation (Fig. 1D).
As the RING domain aids in interfacing and orientating the
ubiquitin E2 enzyme (13), we believe mutation within this
domain would abolish E2-binding, yet still bind CXCR4, thus
sterically preventing access to the substrate, and functioning as
a dominant-negative. We have previously observed this phe-
notype with the E3 ligase FIEL1, in which a dominant-negative
mutant unable to bind substrate not only prevented substrate
degradation, but enhanced overall substrate abundance (27).
Genomic studies have shown that nonsense mutations within
the catalytic RING domain of RNF113A occur in patients with
the autosomal recessive disease trichothiodystrophy (10).
While trichothiodystrophy is a pathologically heterogeneous
disease, malfunction of DNA-repair mechanisms has been
associated with patients (11). It could be that RNF113A is
involved in regulation of these potentially disease-causing
repair mechanisms. Further investigation is needed for deter-
mining the regulation of RNF113A on biologic processes.

We believe that this study is a stepping stone for further
investigations into a novel regulator of CXCR4 stability and
signaling.
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