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Abdominal aortic aneurysm (AAA) is a significant cause 
of death in the elderly, whereas effective pharmacological 

intervention is not yet available.1 Activation of the renin angio-
tensin II (AngII) system has been implicated in AAA devel-
opment in human and animal models of AAA.2,3 While the 
detailed molecular mechanism by which AngII promotes AAA 
development remains unclear, it seems to involve multiple cell 
types (leukocytes, vascular smooth muscle cells [VSMCs], and 
endothelial cells) and signaling responses, such as oxidative 
stress, induction of inflammatory cytokines, and activation of 
matrix metalloproteinases.4,5 However, limited information is 
available regarding the cell type–specific mechanism critical 
for AAA development. Therefore, the aims of this study are 
to define an essential signaling mechanism for development of 
AAA in an AngII-dependent mouse model and to provide a 
novel therapeutic target in AAA.

We have demonstrated that a metalloproteinase, ADAM17 
(a disintegrin and metalloproteinase domain 17), is required 
for AngII-induced epidermal growth factor receptor (EGFR) 
transactivation in VSMCs6 and that the ADAM17/EGFR acti-
vation mediates vascular remodeling in mice infused with 
AngII.7,8 Moreover, ADAM17 expression is enhanced in 
human AAA,9,10 and ADAM17-silenced mice do not develop 
CaCl

2
-induced AAAs.9

β-Aminopropionitrile (BAPN) is an inhibitor for lysyl 
oxidase, which cross-links elastin fibers and collagen fibers 
and plays a critical role in maintaining homeostasis of the 
elastic lamina.11 While BAPN treatment alone does not pro-
mote AAA, it causes AAA development and rupture when 
combined with AngII via degeneration of elastic lamina.12 In 
VSMCs, both ADAM17 and EGFR colocalize at caveolae, and 
AAA formation induced by AngII plus BAPN was attenuated 
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in caveolin-1-deficient mice.13 Moreover, we have recently 
reported that pharmacological inhibition of EGFR prevents 
AAA development induced by AngII plus BAPN, which was 
associated with suppression of endoplasmic reticulum (ER) 
stress, oxidative stress, and interleukin-6 and matrix metallo-
proteinases-2 expression.10 However, whether VSMC-specific 
ADAM17 expression is essential for signal transduction lead-
ing to AAA development or any pharmacological ADAM17 
intervention prevents AAA development remains unclear. In 
the present study, we tested the hypothesis that genetic silenc-
ing of VSMC ADAM17 or systemic ADAM17 inhibitory anti-
body treatment prevents AAA formation induced by AngII 
plus BAPN.

Materials and Methods

Animal Protocol
All animal procedures were performed with prior approval from 
Temple University Institutional Animal Care and Use Committee and 
in accordance with National Institutes of Health Guide for the Care 
and Use of Laboratory Animals. Mice deficient in VSMC ADAM17 
(ADAM17flox/flox Sm22α-Cre+/−) were generated as reported.14 At 8 to 
10 weeks of age, male ADAM17flox/flox Sm22α-Cre+/− mice and litter-
mate male control, ADAM17flox/flox Sm22α-Cre−/−, mice were infused 
with AngII (Bachem; 1 μg/kg·per minute) for 4 weeks and BAPN 
(Tokyo Chemical Industry, 150 mg/kg·per day) for the first 2 weeks 
or control saline for 4 weeks (Alzet, Durect Corp).13 In addition, 8- to 
10-week-old male C57Bl6 mice (Jackson) were infused with AngII 
(1 μg/kg per min) for 4 weeks and received BAPN in drinking water 
(1 mg/mL) for the first 2 weeks together with human/mouse cross-
reactive ADAM17 inhibitory antibody A9B815 or control human IgG2 
(Athens Research & Technology), which was solubilized in PBS and 
administered at 10 mg/kg·per day via intraperitoneal injection, at 
days 1, 7, 14, and 21. Control C57Bl6 mice were sham-operated.

The AngII plus BAPN-induced mouse model of aortic aneurysm 
reproducibly induces AAA with morphological and histological 
characteristics similar to human AAA, but without enhancing ath-
erosclerosis, as seen in other AngII-dependent AAA models.12 Aortic 
luminal diameter at maximal dilation was measured using high-res-
olution 2-dimensional imaging (B mode) with high-frequency ultra-
sound (VisualSonics Vevo2100) on day 0, 14, 21, and 28 of the study. 
The treatment protocols were blinded to the evaluator. Despite the 
original article reporting incidence of thoracic aortic aneurysm in this 
model (38%),12 we consistently observed much less thoracic aortic 
aneurysm(0%–10%).10,13 Therefore, quantitative evaluation was not 
performed in thoracic aortas. Blood pressure and heart rate were 
evaluated in the conscious state at day 28 by telemetry (DSI equipped 
with ADInstrument 6 software) via carotid catheter (PA-C10 trans-
mitter). For animals that died before the completion of the study, nec-
ropsy was performed when possible to define the causes of death. 
The thoracic aorta or abdominal aorta rupture as a cause of death was 
defined with the presence of hematoma in thoracic or abdominal cav-
ity, respectively. After 28 days, mice were euthanized, perfused with 
formalin, and dissected for tissue samples. Abdominal aortas were 
extracted and subjected to paraffin embedding. Sections were stained 
with a standard Masson’s trichrome protocol8 to distinguish medial 
area from adventitia. Images were visualized on an Olympus IX81 
inverted microscope using an Olympus SC30 high-resolution camera 
and acquired with Olympus cellSens Entry 1.11 software.

Immunohistochemistry
Sections from abdominal aortas were deparaffinized and blocked in 
5% goat serum and 1% BSA for 1 hour at room temperature, incu-
bated with primary antibody in PBS containing 1% BSA and 0.1% 
Tween 20 overnight at 4°C followed by biotinylated secondary anti-
body for 90 minutes at room temperature. The sources and dilutions 
of the primary antibodies used in this study are provided in Table 
S1 in the online-only Data Supplement. Slides were incubated with 

avidin–biotin peroxidase complex for 30 minutes at room tempera-
ture, and staining was visualized with the substrate diaminobenzidine 
(Vector), which produced a brown color, and counterstained with 
hematoxylin. An equal concentration of control IgG was used side-by-
side with each antibody to ensure staining specificity. Quantification 
of the antibody staining was performed as reported previously with 
subtraction of IgG background staining.13 All images were visual-
ized on Olympus SC30 high-resolution camera and acquired with 
Olympus cellSens Entry 1.11 software using the same exposure time. 
Images were loaded into the ImageJ program (http://rsb.info.nih.
gov/ij) for analysis. A region of interest was drawn around the entire 
aorta with the freehand selection tool. Adventitia was excluded from 
the quantification because the adventitia areas were limited in aortas 
except those with AAA. All images were set to the same hue, satura-
tion, and brightness. The area and intensity (integrated density) in 
the region of interest were then measured and analyzed. Data were 
obtained from 3 to 4 nonoverlapping fields per aortic cross-section 
for each antibody (n=4 aortas per treatment or genotype). Results are 
presented as fold increase over control, which was set at 1.

Statistical Analysis
Data from the groups were analyzed by 1-way analysis of vari-
ance with Tukey’s multiple comparison test (C57Bl6 mice with 
basal, AAA treatment, or AAA treatment plus ADAM17 antibody), 
2-way analysis of variance with Bonferroni post-tests (ADAM17 
wild-type or deficient mice with or without AAA treatment), or 
log-rank (Mantel–Cox) test (Kaplan–Meier survival curves) using 
GraphPad Prism version 5.0C for Macintosh. Data were presented as 
mean±SEM. Statistical significance was taken at P<0.05.

Results
There was a significant difference in survival rates between 
mice deficient with VSMC ADAM17 (100%) and littermate 
control mice (47.6%) when treated with AngII plus BAPN 
over the 28-day observational period (Figure 1A). Based on 
necropsy, all confirmed deaths were caused by aortic rupture. 
Surviving control mice, as well as mice deficient in VSMC 
ADAM17, treated with AngII plus BAPN developed com-
parable degree of hypertension (Figure 1B; Table S2). All 
surviving AngII plus BAPN-treated control mice developed 
AAA, with significant enlargements of the maximum diameter 
of abdominal aortas. In contrast, VSMC ADAM17-deficient 

Figure 1. A, Vascular smooth muscle cells (VSMC) ADAM17 (a 
disintegrin and metalloproteinase domain 17)–deficient mice 
survived from aortic rupture. Eight-wk-old VSMC ADAM17-
deficient mice (ADAM17flox/flox sm22fCre+/−, A17ffCre+/−) and 
control mice (ADAM17flox/flox sm22 Cre−/−, A17ffCre−/−) were 
infused with angiotensin II (1 μg/kg·per minute, 4 wk) and β-
aminopropionitrile (BAPN; 150 mg/kg·per day, first 2 wk) or saline 
for 4 wk. Percentage survival curve is shown (n=21). B, Telemetry 
recording of mean arterial blood pressure (MAP) on 4-wk infusion 
(n=5).
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mice with AngII plus BAPN treatment had significantly less 
aortic diameter enhancement compared with control mice 
(Figure 2; Figures S1 and S2).

Histological analysis demonstrated that AAAs induced by 
AngII plus BAPN in control mice were associated with vas-
cular fibrosis/matrix deposition and disruption of medial layer 
structures. In addition, enhanced EGFR activation, increased 
expression of ADAM17, matrix metalloproteinases-2, and 
interleukin-6, and enhanced ER stress (Lys-Asp-Glu-Leu), oxi-
dative stress (nitro-tyrosine), and leukocyte infiltration (CD45) 
were observed with semiquantitative immunohistochemical 
staining. These AAA-associated responses were attenuated 
in VSMC ADAM17-deficient mice. However, tumor necrosis 
factor-α (TNFα) expression did not show any statistical differ-
ences among the groups (Figures S3 through S6).

To ascertain that ADAM17 represents a novel therapeu-
tic target to prevent AAA development, C57Bl6 mice treated 
with AngII plus BAPN were injected with a human/mouse 
cross-reactive ADAM17 inhibitory antibody. Distinct from 
VSMC ADAM17 silencing, there was no statistical difference 

in the survival rate with the ADAM17 antibody treatment 
(Figure 3A). The ADAM17 antibody treatment did not alter 
hypertension induced by AngII plus BAPN (Figure 3B; Table 
S3). However, AAA development was significantly reduced in 
mice treated with the ADAM17 antibody compared with the 
control IgG treatment (Figure 4; Figures S7 through S9).

Discussion
Enhanced ADAM17 expression9 and downstream EGFR 
activation10 have been reported in human AAA samples. 
Requirement of ADAM17 in CaCl

2
-induced AAA has also 

been reported with inducible systemic ADAM17 deletion.9 
However, our study provides new information that AngII-
dependent AAA development and rupture are markedly 
prevented in mice lacking VSMC ADAM17 and that phar-
macological intervention of ADAM17 can attenuate AAA 
in a mouse model. Limited VSMC-specific mechanisms are 
known to contribute to AAA in animal models, which includes 
decreased catalase16 and activation of Notch1,17 whereas 
induction of hypoxia-inducible factor-1α in VSMCs seems 
protective.18

In VSMCs stimulated with AngII, ADAM17-dependent 
shedding produces EGFR ligands, such as heparin-binding 
epidermal growth factor–like growth factor leading to EGFR 
transactivation.19 Because EGFR inhibition also prevents 
AngII plus BAPN-mediated AAA development and rupture,10 
VSMC EGFR most likely mediates the ADAM17-dependent 
function in this mouse model of AAA. On activation, EGFR 
mediates several downstream responses in VSMCs, includ-
ing oxidative stress,20 ER stress,8 and intereukin-6 induction.21 
These downstream effects were also evident in the present 
study, thus, likely contributing to AAA development (Figure 
S10).16,22,23 In addition, enhanced vascular ER and oxida-
tive stress further promote immune cell infiltration, which is 
also critical for AAA development.4 Therefore, the findings 
demonstrated in this article suggest that all of these mecha-
nisms are potentially mediated by a single but multifunctional 
metalloprotease ADAM17 specifically expressed in VSMCs. 

Figure 2. Vascular smooth muscle cells (VSMC) ADAM17 (a 
disintegrin and metalloproteinase domain 17)–deficient mice 
did not develop angiotensin II (AngII)–dependent abdominal 
aortic aneurysm (AAA). VSMC ADAM17-deficient mice 
(A17ffsm22αCre+/−) and control littermate mice (Cre−/−) were 
infused with AngII plus β-aminopropionitrile (BAPN) or saline 
as in Figure 1. A, Measurements of maximal external width of 
abdominal aorta (AA) on fixation at 4 wk (Cre−/−, 2.29±0.50 mm 
vs Cre+/−, 1.12±0.23 mm with AngII plus BAPN; n=6). B, Weekly 
ultrasound evaluation of maximal abdominal aorta luminal 
diameter. The panels shown were at 4 wk. *, †P<0.05 compared 
with control saline or AngII/BAPN infusion, respectively (each 
n=5). The measurements were blinded and performed by 2 
evaluators confirming the reproducibility.

Figure 3. A, Survival data of C57Bl6 mice with ADAM17 (a 
disintegrin and metalloproteinase domain 17) antibody treatment. 
Eight-week-old C57Bl6 mice infused with angiotensin II (AngII; 1 
μg/kg·per min, 4 wk) and received β-aminopropionitrile (BAPN; 1 
mg/mL in drinking water, first 2 wk) were intraperitoneally injected 
ADAM17 antibody A9B8 or control human IgG2 (10 mg/kg) at day 
1, 7, 14, and 21. B, Telemetry recording of mean arterial blood 
pressure (MAP) on 4-wk infusion. Control C57Bl6 mice are sham-
operated for minipump implantation (n=5).
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However, additional experiments are desired to track these 
mechanisms before the establishment of AAA. It is also ideal 
to use a distinct model of AAA to generalize our findings, 
which are limitations in this study.

While we confirmed a previously suggested EGFR-
dependent mechanism as a downstream signal of VSMC 
ADAM17, our findings cannot exclude other and potentially 
new mechanism(s) through which ADAM17 contributes to 
AAA development. Other ADAM17 substrates, including 
TNFα, Notch1, and angiotensin-converting enzyme 2, may 
also participate in AAA pathology according to literature.17,24,25 
Note that while the protein expression analysis of TNFα did 
not show any enhancement in AAA, the experiment did not 
measure the potential conversion of pro-TNFα to mature and 
active TNFα by ADAM17. Moreover, ADAM17 has addi-
tional diverse substrates and many regulatory mechanisms.26 
Therefore, further research is required to identify potentially 
new pathways through which ADAM17 regulates AAA.

The AngII plus BAPN model consistently produces AAA 
associated with hypertension, but without enhancing athero-
sclerosis, as observed in other AngII-dependent AAA mod-
els, including hyperlipidemic mice.12 Incidence of AAAs 
in normolipidemic mice with AngII infusion alone is low,27 
even though AngII infusion is sufficient for ADAM17 induc-
tion and EGFR activation in the vasculature, including the 
aorta.8 Therefore, we surmise that ADAM17/EGFR activation 
is required to advance AAA but insufficient to initiate AAA, 
which requires an additional signal or condition such as those 
primed by BAPN or hyperlipidemia.

In the present study, a discrepancy was observed in sur-
vival rates between VSMC ADAM17 deletion with mixed 
background mice and systemic ADAM17 inhibition with 
C57BL6 mice. This may be because of significantly higher 
blood pressure in C57BL6 mice, regardless of the ADAM17 
antibody or control IgG treatment. The discrepancy could also 

be because of distinct genetic background of the mice and 
distinct cell type–specific roles (promoting versus prevent-
ing rupture in AAA) of ADAM17. In addition to the medial 
layer, enhanced ADAM17 expression was also observed in 
endothelium and adventitia of AAA, a finding that is in agree-
ment with prior published work.13 Because the promoter used 
to target ADAM17 is relatively specific to smooth muscle,14 
we assume that attenuation of AAA by silencing VSMC 
ADAM17 results in prevention of endothelial and adventi-
tial ADAM17 induction by AngII plus BAPN. In addition to 
VSMC ADAM17, the ADAM17 antibody likely inhibited 
endothelial and adventitial ADAM17 in the present study. 
Therefore, the roles of endothelial and adventitial ADAM17 
in AAA require further study.

Perspectives
Our findings highlight the critical role of ADAM17 in mediat-
ing AAA development and rupture. We propose that VSMC 
ADAM17 is a needed component for EGFR transactivation 
contributing to ER stress and oxidative stress in AAA. Our 
results also indicate that ADAM17 inhibition can be a valu-
able treatment option for AAA. However, it remains to be 
explored how the VSMC ADAM17 signal communicates with 
other cell type–specific mechanisms presented before.
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What Is New?
•	Systemic and vascular smooth muscle cells–specific ADAM17 (a disin-

tegrin and metalloproteinase domain 17) inhibition established a role for 
ADAM17 in angiotensin II–dependent abdominal aortic aneurysm (AAA) 
development independent of hypertension in mice.

•	The concept of vascular ADAM17 in mediating the epidermal growth fac-
tor receptor  pathway, oxidative stress, endoplasmic reticulum stress, 
and inflammation was presented.

What Is Relevant?
•	Results indicating prevention of AAA but not hypertension by ADAM17 

inhibition provide a foundation to seek a potential therapy to prevent AAA 
development.

•	The vascular dominant ADAM17 signal transduction highlights the im-
portance of vascular signal transduction for AAA formation.

Summary

In angiotensin II plus β-aminopropionitrile–treated vascular smooth 
muscle cells ADAM17-deficient mice, AAA development and rup-
ture were prevented compared with treated control mice. These 
aortas with AAA showed vascular epidermal growth factor receptor 
activation and induction of ER stress and oxidative stress markers, 
which were attenuated in ADAM17-deficient mice. ADAM17 inhibi-
tory antibody was used to confirm the contribution of ADAM17 in 
AAA pathology.

Novelty and Significance
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