Nuclear-mitochondrial crosstalk in the heart during diabetes mellitus — the impact on RNA in mitochondrial subpopulations
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results in poor mitochondrial function, resulting in the
mitochondrion producing less substrates for nuclear epigenetic
machinery, and ultimately further impacting the transcriptome.
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Figure 3: CpG island methylation for HSPA9 and Hspa9. CpG island : - : : :
@ methylation in the promotor region of (A) Hspa9 and (B) Pnpt1 in control Figure 4: Changes in histone methylation dynamics for Hspa9, HSPA9, Pnptl, and PNPT1. Histone peaks were assessed at the mouse (A) Hspa9 and Pnptl

(black, n = 6) versus db/db (grey, n = 6) mice whole heart. CpG island promoter for H3K4me3 (n = 6) and H3K27me3 (n = 6) and at the human (B) HSPA9 and PNPT1 promoter for H3K4me3 (n = 6) and H3K27me3 (n = 6).

IMS methylation in the promotor region of (C) HSPA9 and (D) PNPT1 in non- Values are expressed as means + SEM. *P < 0.05 for control vs. diabetes mellitus. ChIP-gPCR samples were normalized to their respective input control.
diabetic (black, n = 6) versus type 2 diabetic (grey, n = 6) human right H3K4me3 = histone 3 lysine 4 tri-methylation, H3K27me3 = histone 3 lysine 27 tri-methylation, ND = non-diabetic, T2DM = type 2 diabetes mellitus. HSPA9
atrial tissue. For both human and mouse CpG methylation, 10 clones were Closed Promoter Transcription Halted
selected from each group. ND = non-diabetic, T2DM = type 2 diabetes .
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Matrix Figure 5. Mechanisms affecting HSPA9 Epigenetics. (A) global histone methyltransferase activity for H3K27me3

Mé’el was assessed in control (n = 5) and db/db (n = 5) mouse whole heart. Further, (B) constituents of the PCR2 complex
were measured through gPCR in both human (ND and T2DM, n = 5) and mouse (control and db/db, n = 5) cardiac
tissue. At the Hspa9 promoter loci, (C) ChIP pulldown and gPCR was performed for Ezh2. Values are expressed as
means + SEM. *P < 0.05 for control vs. diabetes mellitus. ChIP-gPCR samples were normalized to respective input was supported by a National Science Foundation IGERT: Research and Education in Nanotoxicology at West
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known to comprise the protein import pathways of the mitochondrion. Import of non-coding RNA (ncRNA) is
suggested to occur through a pore in the mitochondrion (VDAC) or through facilitated transport by PNPase
and/or Ago2. The maintenance of both the mitochondrial protein and ncRNA import are important in shaping
mitochondrial structure, function, and cellular homeostasis.
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