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Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM.
Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am
J Physiol Endocrinol Metab 316: E268–E285, 2019. First published January 2,
2019; doi:10.1152/ajpendo.00314.2018.—Type 2 diabetes mellitus (T2DM) is a
systemic disease characterized by hyperglycemia, hyperlipidemia, and organismic
insulin resistance. This pathological shift in both circulating fuel levels and energy
substrate utilization by central and peripheral tissues contributes to mitochondrial
dysfunction across organ systems. The mitochondrion lies at the intersection of
critical cellular pathways such as energy substrate metabolism, reactive oxygen
species (ROS) generation, and apoptosis. It is the disequilibrium of these processes
in T2DM that results in downstream deficits in vital functions, including hepatocyte
metabolism, cardiac output, skeletal muscle contraction, �-cell insulin production,
and neuronal health. Although mitochondria are known to be susceptible to a
variety of genetic and environmental insults, the accumulation of mitochondrial
DNA (mtDNA) mutations and mtDNA copy number depletion is helping to explain
the prevalence of mitochondrial-related diseases such as T2DM. Recent work has
uncovered novel mitochondrial biology implicated in disease progressions such as
mtDNA heteroplasmy, noncoding RNA (ncRNA), epigenetic modification of the
mitochondrial genome, and epitranscriptomic regulation of the mtDNA-encoded
mitochondrial transcriptome. The goal of this review is to highlight mitochondrial
dysfunction observed throughout major organ systems in the context of T2DM and
to present new ideas for future research directions based on novel experimental and
technological innovations in mitochondrial biology. Finally, the field of mitochon-
dria-targeted therapeutics is discussed, with an emphasis on novel therapeutic
strategies to restore mitochondrial homeostasis in the setting of T2DM.
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INTRODUCTION

The International Diabetes Federation reports the number of
adults 18–99 yr old with type 2 diabetes mellitus (T2DM)
worldwide to be 451 million and predicts this figure will rise to
693 million by 2045 if trends continue (57). The increased risk
of developing T2DM in both aging and obese populations,
coupled with epidemiological data revealing rises in aged and
obese demographics, necessitates deep understanding of the
molecular changes underlying these links (99). Many have
identified the mitochondrion as a locus of convergence for the
host of dysregulated pathways in aging, obesity, and T2DM.

Aging, for example, has been implicated in both mitochondria-
intrinsic impairment such as mtDNA mutation and depletion
and in mitochondria-related processes like apoptosis (16, 41,
92, 197). Obesity is characterized by an increased circulating
free fatty acid concentration and accumulation of triacylglyc-
erol in peripheral tissues that contribute to mitochondrial al-
terations, including increased lipotoxicity, elevated oxidative
stress, and impaired energy substrate metabolism and oxidative
phosphorylation (OXPHOS) (21, 33, 66, 94, 203). The role of
mitochondrial dysfunction is of particular importance in T2DM
due to its established association with insulin resistance, as
previously reviewed (58, 105, 116, 152, 190). However, an
up-to-date synthesis and organization of the many mitochon-
drial alterations in T2DM using an organ-based approach is
urgently needed. The following sections will provide in inti-
mate detail the structural, functional, and molecular changes
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accompanying mitochondrial dysfunction in T2DM across or-
gan systems (Fig. 1). The organization of sections represents
primary effector organs of T2DM pathogenesis with adapta-
tions observed early on at the beginning to secondarily im-
pacted organs that may not reach significant dysfunction until
late in T2DM progression.

MITOCHONDRIAL DYSFUNCTION IN THE T2DM DIGESTIVE
SYSTEM

Mitochondrial Dysfunction in the T2DM Liver

Hepatic dysfunction in the form of nonalcoholic fatty liver
disease (NAFLD) is commonly observed in patients with
T2DM (107, 137, 150, 177, 183). Whether NAFLD is a cause
or consequence of the diabetic pathology remains a topic of
contention; however, the alterations in hepatic energy substrate
metabolism and mitochondrial function in T2DM patients with
NAFLD are well characterized. Decreased insulin sensitivity
of the liver accompanied by increased hepatic fat storage are
two such major metabolic changes found in the diabetic patient
(87, 88, 137, 160). Mitochondria-intrinsic perturbations in
obese, insulin-resistant patients with nonalcoholic steatohepa-
titis (NASH) include lower maximal respiration, increased
mitochondrial uncoupling, and increased proton leak (85).
These findings are further strengthened by the observation of
decreased ATP content and turnover in the T2DM liver (160,
175).

Calcium homeostasis has also been shown to be an impor-
tant contributor to mitochondrial function and insulin sensitiv-
ity in the liver (97, 146, 194). Notably, the endoplasmic
reticulum (ER) has been shown to have functional association
with mitochondria via mitofusin 2 tethering (49). These interac-
tions at the mitochondria-associated ER membranes (MAMs)
have been found to play a major role in insulin signaling, although
whether the coupling of these organelles is increased or decreased
in the insulin-resistant liver is debated (9, 185). Recent findings
indicate that MAM disruption is observed in skeletal muscle of
T2DM humans and mice (184). The influence of ER-mitochon-
dria interactions on all other insulin-resistant organs in T2DM is
currently unknown.

Mechanistic studies have uncovered a variety of potential
molecular mediators to help explain changes in metabolism
and mitochondrial dynamics in the diabetic liver. Members of
the forkhead box transcription factor family have been shown
to be among those mediators most prominently involved. It
was found that Foxa2 is sequestered in the hepatocyte cyto-
plasm of insulin-resistant mice but that adenoviral introduction
of a nuclear constitutively active form reverses many of the
metabolic alterations in the T2DM liver described above (200).
Conversely, Foxo1 knockout (KO) has been shown to reverse
mitochondrial dysfunction and improve hepatic metabolism in
insulin receptor substrate-1 and insulin receptor substrate-2
double-knockout (DKO) mice (35). Transcription factors of the
PGC family have also been implicated in metabolic dysfunc-

Fig. 1. Mitochondria dysfunction across organ systems in type 2 diabetes mellitus. Structural, functional, and molecular changes to mitochondria in multiple
diabetic models are displayed. Green font indicates an increase in the change, whereas red font indicates a decrease in the change. ATPmax, maximal ATP
synthesis rate; CNS, central nervous system; DRG, dorsal root ganglia; ETC, electron transport chain; MAM, mitochondria-associated ER membrane; MFN1,
mitofusin 1; mPTP, mitochondrial morphology and permeability transition pore; OXPHOS, oxidative phosphorylation; PCr, phosphocreatine; PGC-1�,
peroxisomal proliferator activator receptor-� coactivator-1�; PNS, peripheral nervous system; ROS, reactive oxygen species; SOD2, superoxide dismutase 2;
UCP2, uncoupling protein 2.
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tion of the diabetic liver (72, 86, 191). To highlight the
important role of mitochondrial constituents in the diabetic
liver, it was shown that long-chain acyl-CoA dehydroge-
nase-KO mice exhibit hepatic insulin resistance accompanied
by hepatic steatosis (209). Furthermore, mitochondrial acyl-
CoA:glycerol-sn-3-phosphate acyltransferase 1-KO mice were
protected from hepatic triacylglycerol and diacylglycerol ac-
cumulation and insulin resistance following high-fat feeding,
indicating its vital role in the development of diabetic liver
metabolic dysfunction (122). Interestingly, liver-specific pro-
moter methylation of important transcription factors, including
PPARGC1A and mitochondrial transcription factor A, as well
as mtDNA/nDNA ratio, have been reported to be associated
with insulin levels and liver PPARGC1A mRNA levels in
NAFLD (170). Further investigation of mitochondrial dynam-
ics in the diabetic liver using techniques of epigenetics and
epitranscriptomics may provide a clearer explanation of the
altered transcriptomic and proteomic profiles associated with
impaired mitochondrial function.

MITOCHONDRIAL DYSFUNCTION IN THE T2DM
MUSCULOSKELETAL SYSTEM

Mitochondrial Dysfunction in T2DM Skeletal Muscle

Skeletal muscle insulin resistance is a central factor in the
pathogenesis of T2DM. Because of their major role in systemic
metabolism, skeletal muscle mitochondria in the T2DM setting
have been thoroughly investigated. Many groups have come to
an agreement on skeletal muscle mitochondrial dysfunction in
the context of T2DM, although whether this is a cause or
consequence of T2DM is still debated (10, 11, 22, 81, 113, 116,
138, 147, 148, 161, 206). This dysfunction has been charac-
terized by a variety of methods both in vivo and ex vivo. In a
study of T2DM patients and BMI-matched controls, the phos-
phocreatine (PCr) recovery half-time of vastus lateralis muscle
from diabetic patients was 45% longer than that of controls
(161). These results are further strengthened by a separate
group’s finding of lower maximal ATP synthesis rate (ATPmax),
as assessed by PCr recovery in vastus lateralis of T2DM
patients (11). Phielix et al. (138) also found increased PCr
half-time in diabetic vastus lateralis muscle and showed that
ADP-stimulated basal respiration and FCCP-stimulated maxi-
mal respiration were decreased in mitochondria from the dia-
betic patient cohort. This decrease in mitochondrial respiratory
capacity in diabetic patients is supported by the observation of
decreased maximal ADP-stimulated respiration with pyruvate-
malate combination in vastus lateralis mitochondria of diabetic
patients (113). These functional impairments in mitochondria
from diabetic skeletal muscle may be partly attributed to
decreased subsarcolemmal mitochondria (SSM) electron trans-
port chain (ETC) activity in vastus lateralis of T2DM patients
compared with both obese and lean nondiabetic patients (148).
Interestingly, many of these same mitochondrial abnormalities
in hindlimb skeletal muscle of diabetic high-fat diet-fed mice,
including decreased ADP-stimulated respiration, ETC complex
I and III activities, and mitochondrial density, have also been
reported (206). Whether mitochondrial dysfunction is the un-
derlying cause or consequence of T2DM, the latter has been
suggested based on findings of glucose intolerance preceding
mitochondrial impairment in a diet-induced diabetic mouse
model (22). In opposition to the above findings, some have

been unable to find evidence of skeletal muscle mitochondrial
dysfunction in the context of T2DM (24, 50). Although most
studies focused on mitochondrial function in skeletal muscle
have found some degree of dysfunction in T2DM, the ability of
exercise interventions to prevent or reverse some aspects of
this dysfunction is an area of active investigation and is
addressed in a subsequent section.

It is important to consider the experimental techniques
and normalization methods used to measure and interpret in
vivo and ex vivo mitochondrial function. PCr half-time and
ATPmax are in vivo assessments of mitochondrial function
derived from phosphorus-31 magnetic resonance spectros-
copy (31P-MRS) data obtained by fixing a surface coil in the
middle of the vastus lateralis muscle and recording pre-
exercise, during exercise, and postexercise (11, 50, 138,
161). Because of the inability to quantify the mitochondrial
density of the precise muscle tissue providing the 31P-MRS
values, these measures cannot distinguish whether increased
PCr half-time or decreased ATPmax is due to decreased
mitochondrial number or impaired mitochondrial function
or exactly how much each may contribute. One method of
determining ex vivo mitochondrial function is measuring
oxygen consumption polarographically (22, 24, 113, 115,
138, 206). To ensure mitochondrial function rather than
density is represented by using this technique, a variety of
normalization methods have been employed to normalize
for mitochondria content including citrate synthase activity,
mtDNA copy number, isolated mitochondria protein con-
centration, or a combination of these parameters (24, 113,
138, 206). Another ex vivo analysis of mitochondria func-
tion can be found in the measurement of ETC complex
activities following mitochondrial permeabilization. Opti-
mal normalization of ETC complex activity data follows suit
with those methods used for normalizing mitochondrial
respiration data (113, 115, 148, 206). Whereas in vivo
mitochondrial analysis provides a more physiologically rel-
evant representation of mitochondrial function within its
network and environment, ex vivo mitochondrial assessment
allows one to control for mitochondrial density. A combi-
nation of in vivo and ex vivo mitochondrial analysis in the
model being studied is ideal to provide the greatest insight
into mitochondrial function. It is essential to consider both
the technique to assess mitochondrial function and the
method(s) of normalization when interpreting results of
mitochondria function in all tissue types.

The shift in energy substrate availability for insulin-resistant
skeletal muscle of T2DM patients and animal models necessi-
tates an alteration in mitochondrial metabolism and is also
associated with decreased expression of antioxidant genes in
concert with increased oxidative stress (25). Multiple groups
have converged on the important role peroxisomal proliferator
activator receptor-� coactivator-1� (PGC-1�) plays in mediat-
ing this metabolic change (117, 132). PGC-1�, a major pro-
moter of oxidative metabolism and mitochondrial biogenesis,
was found to be downregulated in vastus lateralis of T2DM
patients when compared with controls with no family history of
diabetes mellitus (132). Decreases in expression of PGC-1�-
responsive genes involved in fatty acid oxidation (FAO),
glycolysis, the tricarboxylic acid (TCA) cycle, and the ETC
were also reported (132). The precise regulation of upstream
and downstream pathways of the PGC-1 family of coactivators

E270 MITOCHONDRIA DYSFUNCTION IN DIABETES

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00314.2018 • www.ajpendo.org
Downloaded from www.physiology.org/journal/ajpendo at West Virginia Univ (157.182.105.001) on March 5, 2019.



in health and metabolic disease has been reviewed previously
(98). Gene Set Enrichment Analysis identified the OXPHOS
gene set to have the most significantly changed expression in
DNA microarray data from vastus lateralis samples of patients
with T2DM relative to controls (117). In agreement with these
findings, others have found downregulation of the ATP syn-
thase gene transcript in skeletal muscle of T2DM subjects
(172). Decreased FAO in vastus lateralis muscle of non-
insulin-dependent diabetes mellitus patients has been observed
by others; however, a concomitant increase in glucose oxida-
tion was also reported (82). In addition to changes in the
expression of oxidative metabolism components in the T2DM
phenotype, it has been reported that the levels of phosphory-
lated ATP synthase �-subunit are significantly lower in T2DM
(71). Others have reported increased expression of mtDNA-
encoded cytochrome oxidase I, cytochrome oxidase III, and
NADH dehydrogenase IV transcripts in T2DM skeletal muscle
when normalized to mtDNA copy number, although this does
not necessarily indicate the increased protein expression of
these genes (8). Potential factors that may account for the
increase in these gene transcripts important in OXPHOS that is
contradictory to the above studies in skeletal muscle include
the lack of controlling for age, sex, and other important patient
characteristics between nondiabetic and T2DM groups as well
as skeletal muscle samples being taken from either gastrocne-
mius or quadriceps instead of a single location in all subjects
(8). Additional factors that may account for differences in
mitochondrial function and gene expression between studies
comparing skeletal muscle of nondiabetic and T2DM subjects
include normalization methods and differences in fitness level
as well as medication history of participants. The global
decrease in expression of genes involved in oxidative metab-
olism of skeletal muscle mitochondria found in most studies
investigating T2DM pathology may help explain the decreased
basal and maximal respiration in this population described
above.

It will be of great value to investigate additional mitochon-
drial dynamics, including calcium homeostasis, fission/fusion
balance, network formation, and mitochondrial reticulum al-
terations in the setting of T2DM to determine how changes in
these processes may influence metabolic dysregulation in skel-
etal muscle mitochondria. To this end, it was shown that right
atrial tissue of T2DM patients displayed markedly reduced
intrinsic contraction, increased oxidative stress, and mitochon-
dria dysfunction associated with observations of mitochondrial
network fragmentation and decreased expression of mito-
fusin-1 (115). Mitochondrial dynamics in T2DM has been
reviewed previously (152, 199). Furthermore, the critical roles
of calcium transport and homeostasis in both skeletal muscle
and cardiac mitochondria as well as its tight linkage with
OXPHOS has also been examined (42, 65, 129). Exploring
how calcium handling is changed in T2DM may provide
greater insight into the OXPHOS alterations observed. More
recently, they have provided convincing evidence to support a
mitochondrial reticulum in skeletal muscle in which proton-
motive force is generated primarily in complex IV-rich para-
vascular mitochondria and conducted down complex V-rich
I-band mitochondria, where it is used for ATP generation (64).
The theoretical basis of this electrochemical transmission,
identifying Na� and/or K� as essential ions in the conduction

from the cell periphery to the I-band segments, has been
reported (131).

Ability of Exercise to Reverse Mitochondrial Dysfunction in
T2DM

Exercise training has been shown not only to improve
insulin sensitivity in patients with T2DM but also to help
restore mitochondrial function (69, 102, 110, 145, 182,
189). In fact, in vivo mitochondrial function, which was
decreased in T2DM patients, was normalized by exercise
training in T2DM subjects up to control levels (110). In a
separate study, it was shown that a behavioral weight loss
program in T2DM patients, including �4 days of exercise at
60 –70% maximal heart rate, increased skeletal muscle mi-
tochondrial density, size, cardiolipin content, mtDNA con-
tent, citrate synthase activity, and NADH oxidase activity
(182). Van Tienen et al. (189) showed that after 1 yr of
exercise training twice/wk, longstanding T2DM patients had
an increased PCr recovery rate constant and increased mi-
tochondrial density and complex I activity of vastus lateralis
muscle. Low-volume, high-intensity exercise was also
shown to increase maximal citrate synthase activity as well
as upregulate subunits of ETC complexes II and III in vastus
lateralis muscle of T2DM patients (102). Ten weeks of
aerobic training on a stationary bike two to three times/wk
was enough to increase respiration with complex I-sup-
ported substrates, ETCmax, and mitochondrial lipid oxida-
tion in vastus lateralis from T2DM patients (69). Others
have found low-intensity exercise in the form of walking
�150 min/wk over the span of 4 mo to increase the
expression of metabolic enzymes UCP3 and PPAR� (59).
The positive effects of exercise extend beyond T2DM pa-
tients, as aerobic exercise programs have been shown to
improve insulin sensitivity and skeletal muscle mitochon-
drial function in both healthy subjects and nondiabetic obese
participants (69, 110). The precise contribution that physical
inactivity of T2DM subjects has on skeletal muscle mito-
chondrial dysfunction has not been quantified; however, it is
plausible that increasingly sedentary lifestyles of T2DM
patients may play a significant role for changes in skeletal
muscle mitochondrial density and function. Evidence in
support of this hypothesis comes from studies in skeletal
muscle showing that mitochondrial respiration is similar in
T2DM and nondiabetic subjects when physical activity is
controlled for and that mitochondrial function in T2DM is
restored to control levels following an exercise training
program (145, 189). The dynamic nature of the mitochon-
drion, and of mitochondrial metabolism more specifically,
makes it susceptible to environmental insults but also to the
positive impact of exercise training and lifestyle modifica-
tion.

Exercise training has been found to have systemic positive
effects in patients with T2DM, as evidenced by decreased liver
fat, improved �-cell function, bolstered endothelial function,
enhanced cardiac structure and function, and attenuation of
diabetic peripheral neuropathy development (13, 20, 30, 40,
91, 213). The precise mechanisms linking exercise training to
the improved function of organs negatively impacted by T2DM
have not been fully elucidated, but we suspect that, as in
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skeletal muscle, improved mitochondrial function will be a
significant contributor.

MITOCHONDRIAL DYSFUNCTION IN THE T2DM ENDOCRINE
SYSTEM

Mitochondrial Dysfunction in T2DM Pancreatic �-Cells

Pancreatic �-cells serve as the body’s thermostat in sensing
glucose level and responding to insulin needs of the organism.
When either of these abilities to sense or to respond is im-
paired, there are consequences to systemic metabolism. In a
state of metabolic homeostasis, temporary fluctuations in blood
glucose levels are easily corrected by small alterations in
insulin secretion. However, in the setting of T2DM, chronic
exposure to hyperglycemia and hyperlipidemia impairs �-cell
function. Multiple groups have highlighted mitochondrial
structural or functional abnormalities as key factors in this
impairment (6, 51). Pancreatic �-cells from diabetic patients
were shown to have increased expression of ETC complexes I
and V though decreased ATP levels and ATP/ADP ratio (6).
They explained this paradox by showing increased uncoupling
protein 2 (UCP-2) expression in diabetic islet cells of which
glucose-stimulated insulin production was decreased (6). In-
terestingly, it has recently been reported that high-intensity
CrossFit training 3 days/wk for 6 wk can reverse �-cell
dysfunction in T2DM patients (123). In a Goto Kakizaki
T2DM rat model it was shown that pancreatic �-cells displayed
mitochondrial network disintegration (51). Others have found
increased �-cell apoptosis in Zucker diabetic fatty rats and high-
fat diet-induced models of T2DM (165, 169). Increased ETC-
derived reactive oxygen species (ROS) in high-glucose-treated
MIN6 pancreatic �-cells was shown to contribute to de-
creased glucose-induced insulin secretion (156). The impor-
tant role of mitochondria in optimal �-cell function is
further evidenced by the age-related loss of mtDNA corre-
sponding with declining insulin secretion (43, 124). Previ-
ously, it had been shown that mtDNA depletion in a mouse
pancreatic �-cell line prevented adequate glucose-stimu-
lated insulin secretion (168). Altogether, pancreatic �-cell
mitochondria play a dynamic role in the process of insulin
secretion. This begs the question of whether mitochondria-
targeted therapeutics may be a viable treatment strategy to
improve �-cell function in T2DM patients.

Mitochondrial Dysfunction in T2DM Adipose Tissue

Often overlooked as a passive organ, adipose tissue is
insulin-sensitive, highly dynamic, and acutely responsive to
various environmental factors. The strong linkage between
obesity and T2DM provides ample motivation into exploring
how adipocyte populations are altered in the diabetic setting.
One such alteration widely found in adipose tissue from T2DM
patients and animal models is that of mitochondrial dysfunc-
tion or decrement (32, 37, 47, 93, 151). It was reported that
obese T2DM patients displayed increased mitochondrial ROS
when compared with nondiabetic normal weight controls and
concomitantly that mitochondrial antioxidant enzymes were
downregulated in this group (32). It has also been shown that
many ETC components have decreased expression in visceral
adipose mitochondria of women with T2DM (47). This is
further supported by work showing decreased expression of

OXPHOS genes in adipose tissue of T2DM patients (125).
However, others have provided data to support the notion that
mitochondrial dysfunction is only present in obese T2DM
patients (31). In animal models of T2DM, the decrease in
mitochondrial number and protein content have been shown to
be corrected by either daily voluntary wheel running or treat-
ment with the insulin-sensitizing agent rosiglitazone (37, 93,
151). Interestingly, one study looked at five groups of obese
mice with increasing hyperglycemia and found that three
classes of proteins with marked change in expression were
those of metabolism, signal transduction, and transcription
factors (120). In the 3T3-L1 adipocyte cell line, treatment with
high glucose and high glucose plus high free fatty acids
resulted in increased ROS levels, loss of mitochondrial mem-
brane potential, and downregulation of NRF1 and PGC-1, two
important OXPHOS transcription factors (61). These findings
suggest that changes in adipose tissue composition and secre-
tion of inflammatory molecules may contribute to mitochon-
drial dysfunction in other organs of the T2DM patient.

MITOCHONDRIAL DYSFUNCTION IN THE T2DM
CARDIOVASCULAR SYSTEM

Mitochondrial Dysfunction in the T2DM Myocardium

Mitochondrial dysfunction in the type 2 diabetic human
myocardium has been observed by multiple groups, al-
though the negatively impacted mitochondria-intrinsic pro-
cesses leading to this impairment are varied (2, 4, 45, 115).
It has been identified that increased oxidative stress and
mitochondrial network fragmentation in right atrial tissue of
diabetic patients may be contributors to the observed dys-
function (115). Others have echoed this reported increase of
ROS in the human diabetic heart (2, 4). Some argue that this
increase in metabolic stress may render the myocardium
more susceptible to Ca2�-induced mitochondrial permeabil-
ity transition pore opening and further activation of the
intrinsic apoptosis pathway (4). Indeed, this group found
increased activity of caspase-9 in right atrial tissue from
T2DM patients (4). Regarding the mitochondrial subpopu-
lation most negatively impacted by the diabetic pathology,
our laboratory has determined that cardiac SSM is most
susceptible to T2DM insult (45). It was found that ETC
complex I and IV activities and expression levels were
decreased in SSM of T2DM patient right atrial tissue,
whereas there was little to no difference in interfibrillar
mitochondria (IFM) (45). The short- and long-term effects
of insulin therapy or lifestyle modification on the levels of
ROS and apoptosis activation in the diabetic human heart
remain unexplored.

Murine models of T2DM have largely recapitulated the
cardiac mitochondrial dysfunction described above (18, 23, 46,
84, 106, 109, 121, 181). These models may provide the
researcher with more detailed insight into the mechanistic
underpinnings of T2DM on cardiac mitochondria due to the
ability to analyze the full heart and not atrial tissue alone. The
in-depth understanding of mitochondrial-driven pathways such
as energy substrate metabolism and ROS generation provided
by T2DM animal models have proven invaluable. As an
example, our laboratory observed downregulation of ATP6 in
SSM of db/db hearts (164). Decreased expression of mtDNA-
encoded genes in T2DM may also be a function of decreased

E272 MITOCHONDRIA DYSFUNCTION IN DIABETES

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00314.2018 • www.ajpendo.org
Downloaded from www.physiology.org/journal/ajpendo at West Virginia Univ (157.182.105.001) on March 5, 2019.



binding of mtTFA to the D-loop of mtDNA to initiate tran-
scription (80). Previously, we have shown that the SSM sub-
population from cardiac tissue in the db/db model had de-
creased size, internal complexity, state 3 respiration, and ETC
complex activities (46). Others have characterized mitochon-
drial energy substrate metabolism in the insulin-resistant ob/ob
heart, finding precipitously decreased glucose metabolism with
concomitant increased rates of palmitate oxidation (109). As
with the human disease, increased ROS generation has been
established as a hallmark of the T2DM cardiac phenotype in
animal models. It has been found that there is increased H2O2

production when db/db cardiac mitochondria were provided
with glutamate and malate in combination (84). Other groups
have also reported increased mitochondrial-derived ROS as
well as higher lipid and protein peroxidation products (23,
106). Another group showed that mitochondrial ROS were
dramatically increased in cardiac mitochondria of Zucker dia-
betic fatty rats (18). Interestingly, some have documented the
increased presence of myocardial lipid droplets in the diabetic
heart, situated even closer to the mitochondria (23, 121).
Boudina et al. (23) make a striking argument for fatty acid-
induced mitochondrial uncoupling in the db/db heart to explain
how increased FAO and ETC complex activities lead to in-
creased mitochondrial-generated ROS, lower ATP synthase F1
�-subunit expression, and impaired OXPHOS capacity. Simi-
lar to the skeletal muscle, which is discussed above, the
myocardium has also been found to possess a mitochondrial
reticulum, albeit with greater segmentation (63). Whether car-
diac mitochondrial networks are altered in T2DM or have a
reduced capacity to undergo dynamic disconnection to pre-
serve function remains unknown. Although the above men-
tioned diabetic animal models clearly share many cardiac
mitochondrial similarities with T2DM patients, there remains
an open opportunity to more closely mimic the insulin-treated
T2DM patient in an animal model and determine whether
combining novel mitochondria targeted therapeutics with tra-
ditional insulin therapy would provide improved cardiac func-
tion in T2DM preclinical models.

Mitochondrial Dysfunction in T2DM Vascular Endothelium

Endothelial dysfunction has been found to accompany
T2DM in both the human pathology and animal model (36,
83, 162). This impairment in endothelial function can be
explained in part by altered mitochondrial processes. The
most prevalent observation in diabetic endothelial cells is
the increased accumulation of mitochondrial-derived ROS
(36, 83, 162). It has been shown that mitochondrial fission
contributes to increased mitochondrial ROS production by
knocking down mitochondrial fission proteins Fis1 or Drp1
and finding no increase in ROS production when stressed
with high glucose (162). In a T2DM animal model generated
by streptozotocin (STZ) injection followed by a high-fat
diet, coronary endothelial cells were found to have higher
mitochondrial ROS levels and lower superoxide dismutase 2
expression than nondiabetic controls (36). Thus, the in-
creased mitochondrial ROS observed in the T2DM vascu-
lature could be a function of both structural abnormalities
and decreased antioxidant defense.

MITOCHONDRIAL DYSFUNCTION IN THE T2DM NERVOUS
SYSTEM

Mitochondrial Dysfunction in the T2DM Central Nervous
System

The connection between T2DM and dementia has been
thoroughly studied. In the Honolulu-Asia Aging Study, it
was shown that T2DM was associated with increased risk of
total dementia, Alzheimer’s disease, and vascular dementia
(134). Risk of T2DM patients developing Alzheimer’s dis-
ease was compounded by the co-occurrence of the APOE-ε4
allele (134). Some have pointed to the alterations in the
cerebral glucose metabolic rate in the frontal, temporal-
parietal, and cingulate brain regions of prediabetic or T2DM
patients as an important factor in declining cognitive func-
tion (12). This phenomenon has been more extensively
investigated in diabetic animal models. It has been reported
that brain mitochondria from sucrose-treated T2DM mice
have a decreased respiratory control ratio, membrane poten-
tial, and ATP/ADP ratio when compared with nondiabetic
mice (29). This observed brain mitochondrial dysfunction in
T2DM may be attributed to higher ROS production in
combination with greater susceptibility to oxidative damage
(143, 158). The influences of aging and amyloid-� exposure
on brain mitochondria from diabetic Goto Kakizaki rats
were examined, and it was reported that function was most
compromised when T2DM, aging, and amyloid-� exposure
were all present (118). Others utilizing the same diabetic
model found that amyloid-�1– 40 exposure of brain mito-
chondria induced increased H2O2 production, followed by
decreased respiratory control ratio and ATP content; how-
ever, treatment with the antioxidant CoQ10 attenuated these
negative effects (119). It is important to note that some have
documented no change in brain mitochondrial function or
biogenesis of young (6-mo-old) diabetic Goto Kakizaki rats
(159). There is a need to identify the specific pathways
implicated in other pathologies that synergize with the
T2DM phenotype to produce mitochondrial dysfunction in
the brain.

Mitochondrial Dysfunction in the T2DM Peripheral Nervous
System

Diabetic peripheral neuropathy is a major complication for
many T2DM patients, and the impairment of peripheral neu-
rons in diabetics has been shown to be linked to structural or
functional abnormalities of their mitochondria. One group
reported enlarged mitochondria containing disrupted cristae in
sciatic nerves of galactose-fed diabetic rats and in sural nerves
of T2DM patients (78). In contrast, others have observed more
numerous smaller, fragmented mitochondria in dorsal root
ganglion neurons of db/db mice when compared with controls
(54). Others have observed increased mitochondria in dorsal
root axons of db/db mice (192). Regarding other peripheral
nerve mitochondrial changes in T2DM, it has been shown that
there is decreased expression of ETC complex proteins in
dorsal root ganglia of db/db mice (153). It has also been
reported that TCA cycle intermediates are lower in sural and
sciatic nerves as well as dorsal root ganglia of db/db mice (70).
This downregulation of TCA cycle flux was in concordance
with an increased presence of protein and lipid oxidation found
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in these tissues of diabetic mice (70). Determining the balance
of mitochondrial fission and fusion in human T2DM peripheral
nerves as well as how systemic antioxidant therapy may
attenuate mitochondrial dysfunction in peripheral neurons re-
mains unanswered for the field.

MITOCHONDRIAL DYSFUNCTION A UNIFYING THEME OF
T2DM: THE ADAPTIVE THRESHOLD HYPOTHESIS

Mitochondrial dysfunction as a potentially unifying hypoth-
esis accounting for both skeletal muscle insulin resistance and
impaired pancreatic �-cell insulin secretion, two major events
leading to T2DM, was first proposed by Lowell and Shulman
(105) in a landmark viewpoint article in 2005. In the years
since, organ-specific mitochondrial function in T2DM has been
investigated much more thoroughly, as referenced in the above
sections. Based on these findings, we suggest mitochondrial
dysfunction to be a thread running deep in T2DM not only in
organs that are primary drivers of the disease but also in those
impacted secondarily. Current evidence supports a model
where organs possess an adaptive threshold to genetic and
environmental influences past the point where maladaptation
occurs and the T2DM pathology progresses. Because certain
organs play more prominent roles than others at different
stages of T2DM pathogenesis, one would expect the adaptive
thresholds of organs to be surpassed in a relatively predictive
manner. However, because each organ functions in the context
and environment of the organism, the adaptations and subse-
quent maladaptations of each organ in response to genetic and
environmental insults leading to T2DM influence every other
organ via the circulation. In this section, we present current
evidence in support of this hypothesis.

Integration of T2DM Pathogenesis: Mitochondrial
Dysfunction and Systemic Metabolism

Obesity-related T2DM is attributed partially to energy sub-
strate imbalance both in the circulation and more importantly
in the major effector organs of the diabetic condition: liver,
skeletal muscle, and pancreatic �-islets. Energy substrate lev-
els in the circulation are representative of external influences
such as nutritional inputs and internal influences, including
systemic energy substrate transport and metabolism in all
bodily tissues. Excess nutrition and/or inactivity over an ex-
tended period in conjunction with genetic and epigenetic fac-
tors overwhelms the capacity of the organism to maintain strict
control over circulating energy substrate levels.

In particular, increased hepatic lipid accumulation is a com-
mon observation in prediabetes and early-stage T2DM ex-
plained by higher circulating triacylglycerol levels (89). The
culmination of lipid accumulation, aberrant lipid metabolism,
and insulin resistance of the liver over time pushes the organ
past its adaptive capability of increasing maximal mitochon-
drial respiration to respond to excess energy substrate accumu-
lation, as in NAFLD to crossing its adaptive threshold charac-
terized by decreased maximal respiration, mitochondrial un-
coupling, and mitochondrial leakage, as in NASH (85).
Interestingly, it was shown in the OLETF rat model of obesity
that mitochondrial dysfunction may even precede NAFLD and
hepatic insulin resistance (144). The impact of hepatic lipids on
insulin resistance in T2DM has been definitively established
and reviewed previously (136). Briefly, it has been demon-

strated in vitro that palmitate treatment of hepatocyte cell lines
and primary mouse hepatocytes reduces insulin receptor ex-
pression and activation of the insulin signaling cascade in a
dose- and time-dependent fashion (154). Not only does the
insulin-resistant fatty liver have a reduced capacity to effi-
ciently convert the increased lipids being delivered to it by the
circulation to energy via FAO and OXPHOS, but the lack of
insulin signaling for the inhibition of gluconeogenesis also
contributes to increased glucose production and secretion by
the liver (111, 175). The downstream effects of increased
circulating lipids, glucose, and inflammatory mediators follow-
ing the development of insulin insensitivity in the liver help
explain the tight inverse correlation found between intrahepatic
triglyceride levels and whole body glucose disposal (74).

Increased circulating lipids following excess nutrition and
chronically elevated circulating lipids and glucose following
hepatic insulin resistance lead to the increased transport and
altered metabolism of these substrates in skeletal muscle and
pancreatic �-islets. Metabolic adaptations in skeletal muscle
are first observed to accommodate the changing intracellular
metabolite milieu; however, these adaptations, including in-
creased shuttling of FFAs into cytotoxic lipid synthesis path-
ways and dysregulated energy substrate metabolism, lead to
the adaptive threshold past the point at which there is an
accumulation of inflammatory molecules, increased ROS, mi-
tochondrial dysfunction, and insulin resistance (22, 90). The
coexistence of hepatic and skeletal muscle insulin resistance
contributes to hyperglycemia by both the increased production
and decreased oxidation of glucose. As glucose production by
the liver rises and its transport and catabolism by skeletal
muscle falls, pancreatic �-cells must produce more and more
insulin to achieve homeostatic levels. Long-term exposure to
increasing concentrations of circulating glucose, FFAs, and
inflammatory mediators contribute to �-cell,s reaching and
surpassing their adaptive threshold from where lipotoxicity
and glucotoxicity lead to increasing rates of ROS production
and �-cell apoptosis (94, 165). The mechanisms of �-cell death
in T2DM have been reviewed previously (52).

The progression along the adaptation/maladaptation contin-
uum in each of the primary organs involved in T2DM patho-
genesis, as described above, undoubtedly influences the func-
tion and thus progression along the adaptation/maladaptation
continuum of organs secondarily impacted by prediabetic and
diabetic conditions. Many of the negative effects observed in
organs secondarily impacted by T2DM stem from the contri-
bution of primary organs of T2DM pathogenesis to altered
metabolite and inflammatory mediator profile of the systemic
circulation. A case in point can be found in white adipose
tissue (WAT). An adaptive response to declining glucose
levels is the activation of WAT triglyceride lipase to mobilize
FFAs to provide substrate for hepatic acetyl CoA (135). Insulin
acts a negative regulator of this activation in WAT; however,
in high-fat diet-fed mice and rats, WAT is not responsive to
insulin’s inhibitor effect, and consequently WAT lipolysis is
enhanced, leading to even greater levels of circulating FFAs
(135). Others have added that adipose tissue mitochondria of
T2DM patients have heightened levels of both ROS and lipid
peroxidation products (32). Alterations in lipid metabolism and
the overproduction of mitochondrial ROS have been shown to
contribute to cardiac dysfunction in both db/db mouse and
Zucker diabetic fatty rat models of T2DM as well (18, 121).
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The systemic metabolic effects of T2DM extend to peripheral
nerves, where glycolytic intermediates are depleted and in-
creased protein and lipid oxidation are observed (70). Because
of the brain’s high dependence on glucose as a fuel source, it
is not surprising that long-term exposure of the cerebrum to the
T2DM-altered circulating milieu induces cerebral insulin re-
sistance, reduced cerebral glucose metabolic rate, and in-
creased risk of dementia (12). Because of the mitochondrion’s
central role in glucose oxidation, FAO, OXPHOS, ROS gen-
eration, and apoptosis, the dysregulation of these pathways
leading to increased circulating glucose and triglycerides,
greater levels of intracellular and secreted cytotoxic lipid
species and inflammatory mediators, and elevated mitochon-
dria-derived ROS and apoptosis activation in key organs can
all be linked to progression along the adaptation/maladaptation
continuum of mitochondria across organs throughout T2DM
progression.

mtDNA MUTATION AND VARIATION, NCRNA, EPIGENETICS,
AND EPITRANSCRIPTOMICS: NEW PLAYERS IN
MITOCHONDRIAL BIOLOGY

This section will cover novel experimental and techno-
logical innovations in mitochondrial biology. Athough we
acknowledge that not much is known about the areas of
ncRNA, epigenetics, and epitranscriptomics in the context
of mitochondria, we present these topics as potential areas
for future investigation in the setting of health and disease.

mtDNA Mutation and Variation in T2DM

The impact of mtDNA variants, whether homoplasmic or
heteroplasmic, can be disastrous in the setting of metabolic
disease. A litany of mtDNA mutations and single nucleotide
polymorphisms have been found to be associated with
T2DM (Table 1). Some groups have segregated their study
populations into mitochondrial haplogroups based on mtDNA
variants to determine whether a specific haplogroup is associated
with increased or decreased risk of T2DM. One study showed that

haplogroup J in a Finnish population was associated with mater-
nally inherited T2DM (114). These results were further supported
by a separate study that found haplogroup J1 to be associated with
T2DM (56). Others have reported that subjects of the mitochon-
drial haplogroup B4 had an increased risk of T2DM, whereas
those of haplogroup D4 carried a decreased risk (100). Interest-
ingly, a lower prevalence (0.1–0.2%) of the A3243G mtDNA
variant in T2DM UK white Caucasian patients has been previ-
ously reported in T2DM Asian patient populations (157). The role
of mitochondrial genetics in conferring increased or decreased
risk of T2DM has been clearly established. One very relevant
question that remains to be answered is whether more metaboli-
cally active tissues that generate more mitochondrial ROS have
increased rates of mtDNA heteroplasmy in T2DM.

ncRNA in Mitochondria: miRNA, lncRNA, and circRNA

Recent work has demonstrated that ncRNA species such
as microRNA (miRNA), long noncoding RNA (lncRNA),
and circular RNA (circRNA) are found in the mitochondria
(19, 48, 76, 126, 141, 173). Our laboratory has shown that
STZ-treated diabetic mice have increased expression of
miRNA-378 in cardiac IFM (76). MiRNA-378 was found to
bind and inhibit the translation of the mtDNA-encoded
ATP6 mRNA transcript, which contributed to decreased
ejection fraction and fractional shortening in diabetic hearts
(76). Others have also shown that a nuclear genome-en-
coded miRNA species can translocate to the mitochondria to
regulate mtDNA-encoded genes, as they report miR-181c to
bind and inhibit the translation of mt-COX1 mRNA (48).
Mitochondrial lncRNA have been found to be both of
nuclear and mitochondrial origin (19, 126, 141). Because of
their versatility of functions, including binding of mRNA,
miRNA, and epigenetic modifiers, the potential differential
expression of mitochondrial lncRNA across organ systems
in the setting of T2DM may prove important. The function
of lncRNA as competitive endogenous RNA that sequesters
the activity of complementary miRNA has been reviewed

Table 1. mtDNA variations implicated in increased or decreased risk of T2DM

mtDNA Alteration Population Variant Nature Summary Ref. No.

A3243G Family Heteroplasmic Variant associated with familial DM and deafness 187
4399–14821 Deletion Family Heteroplasmic Deletion associated with maternal inheritance of

DM and deafness
14

A3243G Japanese Heteroplasmic Variant associated with familial DM 77
C1310T, G1438A, A12026G Japanese Homoplasmic Variants associated with T2DM 179
A3243G Chinese Heteroplasmic Variant associated with T2DM 210
T14577C Family Heteroplasmic Variant associated with T2DM 178
A5178C Japanese N/A Variant associated with maternally-inherited T2DM 195
T16189C UK Caucasians Mostly Homoplasmic Variant associated with T2DM 139
G3316A, T3394C Chinese N/A Variants associated with T2DM 207
C8684T Japanese N/A Variant associated with T2DM 67
T3394C, A14693G, T16189C Chinese A14693G Homoplasmic Variants associated with T2DM 176
T4216C, A4917G Caucasian-Brazilian Homoplasmic Variants associated with T2DM 44
G5231A, A12358G, G12372A Asian N/A Variants associated with resistance to T2DM 60
T16189C Taiwanese N/A Variant associated with T2DM 101
T16189C Asian N/A Variant associated with T2DM 130
T3394C, G4491A, T16189C,

T16519C; C5178A, A10398G
Chinese Han N/A Variants T3394C, G4491A, T16189C, and T16519C

are positively correlated with T2DM; variants C5178A,
A10398G negatively correlated with T2DM

96

16189–16193 Polycytosine Variant Europid N/A Variant associated with T2DM 205

DM, diabetes mellitus; N/A, not available; T2DM, type 2 diabetes mellitus. The mtDNA base pair changes are indicated, followed by the population being
studied, the nature of the mtDNA base pair variation, and a summary of the findings.
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previously (180). Although the stoichiometry of comple-
mentary lncRNA and miRNA species may not near the 1:1
ratio required for full selective miRNA inhibition in the
cytoplasm due to the large pool of miRNA, the action of
lncRNA sponging in the much smaller pool of mitochon-
drial miRNA may be more pronounced. There are a variety
of challenges and potential confounding factors when per-
forming miRNA, lncRNA, or circRNA profiling of cells or
tissue samples that have been outlined previously (140, 167,
174). It is important to take into consideration sample
processing and RNA extraction methods to ensure minimal
degradation of ncRNA in the tissue being studied (140).
Understanding the strengths and weaknesses of qRT-PCR,
hybridization-based methods, and high-throughput sequenc-
ing (RNA-seq) is also imperative when designing miRNA
profiling experiments (140). The low abundance of lncRNA
in most tissue types increases difficulty of quantification;
however, Clark et al. (38) recently developed the technique
of capture sequencing that was shown to be superior to
qRT-PCR and RNA-seq for detection and quantification of
low expressed transcripts such as lncRNA. The low expres-
sion of circRNA coupled with the absence of a poly(A) tail
prevented the detection of this ncRNA species previously,
but new methods of linearizing these transcripts and opti-
mizing RNA-seq library preparation are improving their
detection and quantification (174).

Accumulating evidence over the past decade has supported
the observation of systemic intercellular miRNA transport via
exosomes. It was first demonstrated that mouse mast cells
secrete exosomes harboring functional mRNA and miRNA that
can be received by both mouse and human mast cells (186).
Others have shown Epstein-Barr virus-infected B cells secrete
exosomes carrying EBV-miRNAs that are delivered to mono-
cyte-derived dendritic cells where they act on their target
transcripts (133). Along the lines of immune cell communica-
tion, exosomal miRNA from T cells have been shown to be
transported to antigen-presenting cells (112). This mode of
intercellular communication has also been found within the
cardiovascular system (15, 68). A recent report showed that the
interorgan exosomal transport of miRNA-15a from pancreatic
�-cells to retinal tissue may contribute to diabetic retinopathy
in T2DM (79). Determining the role of interorgan exosome-
mediated ncRNA transport in states of health and disease will
further illuminate the deep interconnectedness of organ sys-
tems.

Mitochondrial Epigenetic and Epitranscriptomic
Regulation

Two of the most cutting edge topics of mitochondrial biol-
ogy are mitochondrial epigenetics and epitranscriptomics.
Shock et al. (166) were the first to establish the presence of
DNA methyltransferase 1 (DNMT1) in the mitochondria along
with describing the mitochondrial targeting sequence in this
isoform. They further showed the presence of 5-methylcyto-
sine (5mC) and 5-hydroxymethylcytosine (5hmC) modifica-
tions of mtDNA (166). A later study reported 83 specific CpG
sites found to be methylated in mtDNA (103). Another group
has characterized the methylcytosine landscape of mtDNA
from 39 separate human cell and tissue types (62). In support
of mtDNA 5hmC modification, the presence of ten-eleven

translocase, the enzyme responsible for 5mC hydroxylation to
5hmC, was observed in the mitochondria (53). The impact of
T2DM on changes in mtDNA methylation and/or hydroxym-
ethylation and how these changes effect mitochondrial function
are wide-open questions for the field to investigate. There have
been a variety of methods developed to detect mtDNA meth-
ylation, each with unique strengths and weaknesses (188). A
couple potential challenges or confounding factors include
incomplete mitochondrial purification or nuclear integration of
mtDNA sequences (188).

It will also be of interest to look at cross-talk between the
mitochondrion and nuclear epigenome in the setting of
T2DM, and this dynamic in homeostasis and stress has been
reviewed previously (108). Briefly, it has been shown that
tissue-specific differentially methylated regions of the nu-
clear genome exist in a healthy state, accounting for the
differences in function and thus gene expression in different
tissues (104, 142). These tissue-specific methylation pat-
terns represent the 70 – 80% of all CpGs that are methylated
in most cell types and are the result of both the copying of
methylation patterns following DNA replication primarily
performed by DNMT1 and de novo methylation during
development primarily attributed to DNMT3A and
DNMT3B (127, 149, 212). DNA methylation has been
shown to be dynamic, as CpG islands in the promoter
regions of specific genetic loci may be more demethylated
or heavily methylated to increase or decrease the expression
of the specific gene in settings of disease such as that of
T2DM. For instance, of the 41 genes reported to have
differential expression between pancreatic �-cells of T2DM
and nondiabetic subjects, 80% (34 genes) had an anticorre-
lation with their promoter methylation (193). Others found
pancreatic duodenal homeobox 1 to be significantly down-
regulated in T2DM pancreatic �-cells, with 10 CpG sites in
the distal promoter and enhancer regions of the gene shown
to be much more heavily methylated in T2DM (202). Bisul-
fite sequencing of nuclear DNA isolated from cells or tissues
of interest provides the average level of methylation for that
population of cells at each desired site, which may then be
correlated with expression of a specific gene. However, the
average level of methylation at the exact distal and proximal
gene regulatory elements and within the gene body itself
required for a specific level of repression or de-repression of
specific genes remains to be elucidated. Notably, recent
advances in single-cell analysis have resulted in the ability
to obtain methylome and transciptome data from the same
cell (7, 39, 73). These illuminating single-cell multi-omics
studies have further supported promoter methylation as a
key influencer of gene repression (7, 73).

Methylation marks have also been observed on mtDNA-
encoded mRNA transcripts (95, 155). The enzymes found in
mitochondria to facilitate this mRNA N1-methyladenosine
(m1A) modification are TRMT10C and TRMT61B (95,
155). Because of the powerful translation activation or
inhibition of the m1A modification, depending on its posi-
tion on the mRNA transcript, T2DM-induced changes in the
mitochondrial epitranscriptome may help to further explain
mitochondrial dysfunction in this condition (Fig. 2) (95,
155).
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MITOCHONDRIA-TARGETED THERAPEUTICS FOR T2DM:
RESTORING FUNCTION

Mitochondria-Targeted Antioxidant Therapy for T2DM

As described above, mitochondrial oxidative stress is a
major contributor to mitochondrial dysfunction across organ
systems in T2DM patients. This increase in ROS production in
diabetic models is associated with alterations in both mitochon-
drial morphology and redox systems biology. In response to
high-glucose treatment, it was found that the Clone 9 rat liver
cell line and H9c2 rat myoblasts undergo dynamin-like GTPase
DLP1/Drp1-mediated mitochondrial fragmentation, which is
necessary for and precedes ROS overproduction (208). In a
particularly illuminating study, Anderson et al. (3) found a
strong link between high-fat diet with increased skeletal mus-
cle mitochondria H2O2 emission, a more oxidized cellular
redox state, and insulin resistance. They showed that mitochon-
drial H2O2 production was a major influencer of the intracel-
lular redox environment by treating standard chow and high-fat
diet-fed rats with the mitochondrial H2O2 scavenger SS31 and
observing no change in oxidized glutathione or in reduced
glutathione/oxidized glutathione ratio following acute glucose
ingestion, whereas these measures were increased and de-
creased in both standard chow and high-fat diet-fed groups (3).
The role of mitochondria in mediating insulin resistance in
T2DM through changes in redox biology has been reviewed
previously (58).

These observations have peaked the interest of many groups
to determine the efficacy of mitochondria-targeted antioxi-
dants, including mitoquinone (MitoQ), in diabetic models.
MitoQ was found to decrease ROS, leukocyte-endothelium
interactions, and TNF� level in leukocytes of T2DM patients

(55). It was also shown to improve systemic insulin sensitivity
and reduce pancreatic islet lipid peroxide levels in high-fat
diet-fed obese mice (75). Further systemic benefit of MitoQ in
T2DM is observed by improved renal function following
administration to db/db mice (198, 201). Some attribute this
positive effect to return of homeostasis in renal tubular cell
mitophagy (201). Because of the presence of increased mito-
chondrial-derived ROS in T2DM musculoskeletal, cardiovas-
cular, endocrine, and nervous systems, it is of high priority to
determine whether MitoQ treatment helps to ameliorate the
diabetes-induced mitochondrial dysfunction in these organ
systems. Results indicating that catalase overexpression im-
proves cardiomyocyte contractility in the agouti T2DM model
hint at the potential benefit MitoQ may provide to the diabetic
heart (204). Additional clinical and preclinical therapeutic
approaches to repairing mitochondrial dysfunction in T2DM
have been discussed previously (171).

Mitochondria-Targeted Metabolic Therapy for T2DM

Increased mitochondrial ROS in T2DM is intimately linked
to changes in energy substrate metabolism and more inefficient
OXPHOS. A common preventative or first-line T2DM thera-
peutic option is metformin, a member of the thiazolidinedione
drug class. Metformin is a dynamic small molecule that has
been reported to have multiple mechanisms of action in many
different tissue types. These mechanisms of action share in
common an alteration in energy substrate metabolism or
OXPHOS. It was found that metformin activates AMP-acti-
vated protein kinase in hepatocytes and skeletal muscle with
downstream effects that include decreased glucose production
by the liver and increased glucose disposal into skeletal muscle
(211). This observation of increased glucose uptake in skeletal

Fig. 2. mtDNA variation and epigenetic and epitranscriptomic regulation of the mitochondrion. An example of mtDNA variation in the ND1 gene that is
associated with increased risk of type 2 diabetes mellitus is shown (Ensembl; left) (96, 176, 207). An example of specific mtDNA CpG sites in the D-Loop found
to be methylated is shown (UCSC Genome Browser; top) (103). An example of specific N1-methyladenosine (m1A) modifications of mtDNA-encoded MT-CO3
mRNA is shown (NCBI; right) (95). 5mC, 5-methylcytosine.
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muscle following metformin treatment is further supported by
others reporting increased glucose transporter 4 expression in
soleus muscle of STZ-induced diabetic rats following met-
formin administration (34). Another group has observed that
metformin treatment in STZ-induced diabetic mice attenuated
atherosclerosis by decreasing endothelial mitochondrial fission
and mitochondrial-derived superoxide generation (196). Yet
others have identified inhibition of ETC complex I and thus
decreased OXPHOS as a mechanism of action for metformin
(5, 26, 27, 128). It is important to maintain a systems mindset
when making sense of how metformin acts to improve the
T2DM condition by inhibiting its multiple targets across organ
systems.

Mitochondria-Targeted Gene Therapy for Restoring
Mitochondrial Omics in T2DM

T2DM is a highly complex polygenic disease with substan-
tial environmental influences. Although there are indeed ge-
netic drivers in T2DM pathogenesis, significant alterations
have been found at the mitochondrial proteome and transcrip-
tome levels in the diabetic condition (1, 17, 28, 46, 76, 163).
Our laboratory has reported the upregulation of the mitochon-
drial RNA import constituent polynucleotide phosphorylase
and downregulation of mitochondrial protein import constitu-
ent mitochondrial heat shock protein 70 in the db/db myocar-
dium to help explain these observations (163, 164). Following
transgenic manipulation of these genes to their physiological
levels, not only were miRNA transcript and protein expression
more normalized to nondiabetic values, but mitochondrial
function was also improved (163, 164). As described above,
others have shown human antigen R and G-rich RNA se-
quence-binding factor 1 to facilitate the import of lncRNA into
the mitochondria (126). Determining whether these and other
important mediators of mitochondrial transport are dysregu-
lated in one or more tissue types of T2DM patients will
uncover important insights into mitochondrial regulation. This
will provide further validation for the premise of using gene
therapy to correct mitochondrial “omics” and help restore
mitochondrial function in T2DM.

CONCLUSION

Mitochondrial dysfunction is the common thread across
organ systems in T2DM patients. Although the specific patho-
physiology observed in each T2DM tissue type is unique due
to tissue-specific gene expression patterns influenced by the
diabetic systemic milieu, many cellular processes that are gone
awry connect to the mitochondrion. This unifying principle of
the T2DM phenotype creates a paradigm shift in which con-
sidering novel therapies for T2DM comorbidities, including
obesity, cardiovascular disease, peripheral neuropathy, and
Alzheimer’s disease, becomes increasingly focused. As new
technologies such as epitranscriptomic analysis are being
forged to uncover the amazing complexity of mitochondrial
regulation, an expanding list of potential pharmacological
targets is emerging. It will be the synergy between continuing
to identify organism-wide driver pathways of T2DM-related
mitochondrial dysfunction and advances in medicinal chemis-
try and mitochondrial drug delivery that may provide combi-
nation strategies to optimally treat this systemic condition.
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