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Maternal engineered nanomaterial
inhalation during gestation alters the fetal
transcriptome
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Abstract

Background: The integration of engineered nanomaterials (ENM) is well-established and widespread in clinical,
commercial, and domestic applications. Cardiovascular dysfunctions have been reported in adult populations after
exposure to a variety of ENM. As the diversity of these exposures continues to increase, the fetal ramifications of
maternal exposures have yet to be determined. We, and others, have explored the consequences of ENM inhalation
during gestation and identified many cardiovascular and metabolic outcomes in the F1 generation. The purpose of
these studies was to identify genetic alterations in the F1 generation of Sprague-Dawley rats that result from maternal
ENM inhalation during gestation. Pregnant dams were exposed to nano-titanium dioxide (nano-TiO2) aerosols (10 ± 0.
5 mg/m3) for 7-8 days (calculated, cumulative lung deposition = 217 ± 1 μg) and on GD (gestational day) 20 fetal hearts
were isolated. DNA was extracted and immunoprecipitated with modified chromatin marks histone 3 lysine 4
tri-methylation (H3K4me3) and histone 3 lysine 27 tri-methylation (H3K27me3). Following chromatin immunoprecipitation
(ChIP), DNA fragments were sequenced. RNA from fetal hearts was purified and prepared for RNA sequencing and
transcriptomic analysis. Ingenuity Pathway Analysis (IPA) was then used to identify pathways most modified by
gestational ENM exposure.

Results: The results of the sequencing experiments provide initial evidence that significant epigenetic and
transcriptomic changes occur in the cardiac tissue of maternal nano-TiO2 exposed progeny. The most notable
alterations in major biologic systems included immune adaptation and organismal growth. Changes in normal
physiology were linked with other tissues, including liver and kidneys.

Conclusions: These results are the first evidence that maternal ENM inhalation impacts the fetal epigenome.
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Background
The Barker Hypothesis [1], Developmental Origins of
Health and Disease (DOHaD) [2], and fetal program-
ming [3], all explore the relationship between the health
of the gestational environment and fetal development
and how this predisposes to future disease or sensitiv-
ities. Maternal prenatal health challenges such as

nutrient deficiency, undernourishment, gestational dia-
betes and hypertension have been linked to an elevated
risk for postnatal cardiovascular diseases [4]. Recently,
maternal environmental toxicant exposures have become
of prominent interest in relation to the impact of expos-
ure on the fetal milieu and subsequent progeny health
[5]. We have reported that maternal ENM inhalation
impairs the ability of uterine arterioles to properly dilate,
and this impacts litter health in the form of pup weight,
number and gender distribution; as well as impaired
microvascular function [21]. While these studies have
focused on the maternal development of a hostile gesta-
tional environment and subsequent reduction in fetal
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nutrients, fetal epigenetic modifications may also occur.
Conceptually, this relationship is not novel, but applica-
tions of environmental toxicants to the maternal-fetal
models are. For example, bisphenol A [6] and air pollution
[7] have been shown to negatively impact fetal outcomes.
However, the impact of maternal ENM on fetal health
and/or epigenetic modification are poorly understood.
Despite the ubiquitous inclusion of engineered nano-

materials in widespread applications, and their projected
proliferation in human endeavors, the consequences of
maternal ENM inhalation on the developing fetus and
their impacts on future health are at best, vague, yet they
are increasingly becoming a health concern. The preva-
lence of ENM covers an immense spectrum: surface
coatings and additives in common consumer products
(electronics, food, cosmetics), additives in industrial pro-
cesses (advanced building materials, synthetic fuels), and
components of clinical applications (diagnostics, drug
delivery, implantable devices). It is widely recognized
that throughout the ENM life cycle, the greatest risk for
human exposure and subsequent health consequences
begins with ENM inhalation, and is typically followed by
systemic injuries. We have reported that pulmonary and
systemic microvascular inflammation [29, 32] follow
ENM inhalation exposure. Consistent with this, other
systemic morbidities known to follow pulmonary ENM
exposures include: inflammation/apoptosis [8, 9], macro-
vascular and microvascular dysfunction [10], atherogen-
esis [11], and organ level ischemia [12]. The developing
fetus is equally a systemic target of numerous anthropo-
genic toxicants [13].
The impact of gestational ENM exposures on maternal

and fetal health have been increasingly studied in the
past decade. Adverse impact of ENM exposures on ma-
ternal health [14] and pregnancy [15, 16] have been re-
ported in animal models. Teratogenic and embryo-lethal
effects associated with ENM exposure have been shown
[17]. The outcomes from several studies also highlight
post-natal behavioral deficits [18, 19], cardiovascular [20,
21], renal [15], immune [22], reproductive [23, 24],
pulmonary, and metabolic [20, 25] abnormalities.
Epigenetics, or the transient control of genes through

DNA methylation or histone modification, is a recent area
of intense focus by governmental agencies recognizing
mechanistic links between environmental toxicants and
gene expression [26]. These adverse maternal and fetal
outcomes strongly reflect the potential risk of ENM expos-
ure during pregnancy that may be linked. However, given
the inherent physiological dependencies and complexities
of developing and maintaining a healthy pregnancy, linking
the mechanisms of pulmonary exposure and gestational ef-
fects remains very challenging. Given the magnitude of
and the complexity these transgenerational effects, the
most effective approach may be to initiate studies from the

fetal epigenome and/or transcriptome. This is largely be-
cause fetal epigenetic outcomes resulting from maternal
ENM exposure consequences may be caused by the cre-
ation of a hostile gestational environment [27], and/or the
direct impact of ENM interacting with the developing
embryo [13]. Because either of these possibilities would
compromise health, the purpose of these studies was to
identify epigenetic changes in cardiac gene expression
within the maternally exposed F1 generations. We hypoth-
esized that because maternal ENM inhalation lead to uter-
ine microvascular dysfunction [21], this contributes to a
hostile gestational environment, and altered fetal gene ex-
pression results. To test this, pregnant dams were intermit-
tently exposed to nano-TiO2 aerosols during gestational
days 5-19, and their litters were studied on GD 20.

Methods
Animal model
Sprague Dawley rats were purchased from Hilltop
Laboratories (250-275 g female; 300-325 g male). All
experiments were approved by the West Virginia Uni-
versity Animal Care and Use Committee and experi-
ments adhered to the National Institutes of Health
(NIH) Guide for the Care and Use of Laboratory Ani-
mals (8th Ed.). Rats were provided food and water ad
libitum and housed in an AAALAC approved animal fa-
cility at the West Virginia University Health Sciences
Center. Before mating, rats were acclimated for a mini-
mum of 72 h, as previously described [20]. Pregnancy
was verified by identification of the vaginal plug, after
which, rats were randomly placed into one of two nano-
TiO2 exposure groups. These two exposure groups were
virtually identical and were created to generate a discrete
tissue bank for RNA sequencing, or ChIP sequencing.

Engineered Nanomaterial
Nano-TiO2 P25 powder was purchased from Evonik
(Aeroxide TiO2, Parsippany, NJ), containing anatase
(80%) and rutile (20%) TiO2. Nano-TiO2 was prepared
by drying, sieving, and storing, as previously described
[28, 29]. Nano-TiO2 aerosols were created with our
aerosol generator (US Patent No. 8,881,997) [30]. Par-
ticle characteristics have been determined including the
primary particle size (21 nm), the specific surface area
(48.08 m2/g) [29, 31], and the Zeta potential (−56.6 mV)
[32].

Nano-TiO2 inhalation exposures
The nano-particle aerosol generator (US Patent No.
8,881,997) and whole-body inhalation exposure system
used for the current study have been described extensively
in previous studies [29, 31]. This collective exposure sys-
tem consists of a vibrating fluidized bed, a Venturi vacuum
pump, cyclone separator, impactor and mixing device, an
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animal housing chamber, and real-time monitoring de-
vices with feedback control. Nano-TiO2 was aerosolized
via a high velocity air stream passing through the vibrating
fluidized bed and into the Venturi vacuum pump. The
generated aerosols then entered the cyclone separated,
which is designed to remove agglomerates > 400 nm at an
input flow rate of 60 l/min of clean dry air before entering
the exposure chamber.
Size distribution, mean aerodynamic diameter, and

relative mass concentration of the aerosols were moni-
tored in real time (Electrical Low Pressure Impactor
(ELPI), Dekati, Tempere, Finland) while the particle size
distribution was also measured in real-time with a Scan-
ning Mobility Particle Sizer device (SMPS; TSI Inc., St.
Paul, MN). These measurements were verified through-
out a given exposure by collecting nanoparticle samples
on filters, and making hourly gravimetric measurements
with a microbalance. This approach was also used to
collect samples for transmission electron microscopy.
Inhalation exposures were initiated on GD 5.78 ± 0.11

and lasted for 7.79 ± 0.26 days of gestation. Exposure
days were not consecutive to decrease animal stress.
Once the steady state nano-TiO2 aerosol concentration
was achieved, exposure duration was adjusted to pro-
duce a daily calculated lung deposition of 31 ± 1.1 μg per
day, and the cumulative, calculated dose was therefore
217 ± 1.0 μg. Lung deposition was calculated based on
previously described mouse methodology, and normal-
ized to rat weight and to pregnant rat minute ventilation
using the equation: D = F⋅V⋅C⋅T, where F is the depos-
ition fraction (14%), V is the minute ventilation based on
body weight, C equals the mass concentration (mg/m3),
and T equals the exposure duration (minutes) [29, 33].
The target concentration was 10 mg/m3 and the dur-
ation was 4-6 h/exposure (depending on the steady state
concentration, as this was used to calculate the lung
burden). The last exposure was conducted 24 h prior to
sacrifice and experimentation. Control animals were
exposed to HEPA filtered air only.

Chromatin Immunoprecipitation (ChIP) sequencing
Isolation
Cardiac tissue was isolated from GD 20 pups in both the
nano-TiO2 exposure and control groups. Each litter was
considered an n = 1, with cardiac tissue from 5 to 6 pups
within each litter being pooled together to collect enough
tissue (~25 mg). Chromatin Immunoprecipitation (ChIP)
was carried out using the MAGnify™ Chromatin Immuno-
precipitation System (Thermo Fisher, Rockford, IL) per
manufacturer’s instructions. Briefly, hearts were homoge-
nized and treated with 37% formaldehyde, which was pre-
pared fresh. Cross-linking was stopped with 1.25 M
glycine. Samples were pelleted through centrifugation and
washed in D-PBS before sonication. Using a Sonicator

Ultrasonic Processor XL2015 (Misonix Sonicator, Farm-
ingdale, NY) chromatin was sheared to a size of 500-700
base pairs, determined using gel electrophoresis (Fig. 1a).
Chromatin was then isolated through ultracentrifugation
(20,000 g) and diluted to ~60 uL of chromatin per immu-
noprecipitation reaction. Samples from both the control
and nano-TiO2 cohorts were incubated with histone 3 ly-
sine 4 tri-methylation (H3K4me3, product number:
G.532.8, Thermo Fisher, Rockford, IL) or histone 3 lysine
27 tri-methylation (H3K27me3, product number:
G.299.10, Thermo Fisher, Rockford, IL) antibody bound
beads. These are two of the most prominently studied and
classically applied for activation/repression analysis of
gene activity. After incubation, samples were treated to re-
verse cross-linking solution and Proteinase K to remove
bound proteins. DNA was then eluted from beads, using
heat, and quantified using a Qubit (Thermo Fisher,
Rockford, IL). The TruSeq ChIP Library Preparation Kit
(Illumina, Inc., San Diego, CA) was implemented to build
the libraries.

ChIP bioinformatics
Samples were processed using the Illumina MiSeq (Illu-
mina, Inc., San Diego, CA) at the West Virginia University
Genomics Core, ran as paired-end reads. Fastq files were
assessed for quality using FastQC (Babraham Bioinformat-
ics) (Fig. 1b), where it was determined that partial trimming
was needed. Trimming of fastq files was accomplished
through Trimmomatic [34] (Fig. 1c). Reads were then
mapped to the rat genome (rn6) using the default parame-
ters in bowtie2. To perform differential binding analysis on
reads while distinguishing peaks, diffReps was used [35].
Bedtools functions were used to delineate upstream
promoter regions of genes (bedtools slop) and evaluate the
promoter/gene overlay (bedtools intersect). Genes were
defined to include 1000 bases upstream from the start of
the gene, indicative of our selected “promoter region.”

RNA sequencing
Isolation
Cardiac tissue was procured through the same methods
as listed above in the ChIP Sequencing section. RNA
was then isolated from heart tissue using the Vantage™
Total RNA Purification Kit (Origene, Rockville, MD) per
manufacturer’s instructions. Briefly, tissue was homoge-
nized and lysis buffer was added to the sample. Sample
RNA was spin-column purified and measured for RNA
concentration using the Qubit (Thermo Fisher, Rock-
ford, IL). Library preparation was performed using Tru-
Seq RNA Library Prep Kit v2 (Illumina, Inc., San Diego,
CA). Quality of RNA was determined using the Agilent
2100 BioAnalyzer (Agilent Technologies, Santa Clara,
CA); degradation of cytosolic ribosomal RNAs (28S and
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18S) are used as a measure of the total RNA Integrity
Number (RIN) (Fig. 2a, b).

RNA bioinformatics
Samples were processed using the Illumina HiSeq (illu-
mina, Inc., San Diego, CA) at Marshall University. Sam-
ples were run as paired-end reads. Paired-end, fastq files
were aligned with HISAT2 [36] to the rat genome (rn6)
without trimming. Samtools 1.2 [37] was used for the
conversion of SAM to BAM format. Counts data was
prepared using Subread 1.5.2 [38], specifically feature-
Counts [39]. Differential expression analysis was accom-
plished using DESeq2 [40] in R.

Ingenuity pathway analysis (IPA)
Protein ontology and pathway analysis were completed
through QIAGEN’s IPA (www.qiagen.com/ingenuity)
software. Core analyses and comparative analyses were
run on individual and combined ChIP and RNA data
sets, respectively. Z-scores are representative of fold
change between groups.
RNA IPA Protein Ontology.
The intensity of the color, moving toward blue or red,

indicates the degree to which a specific pathway is being
decreased or increased, respectively. The change in color,

reflective of the z-score, is a quantitative measure of confi-
dence (defined as the cumulative P-value of molecules in
a specific pathway). This measure of confidence, defined
on a color scale, indicates the propensity of all the mole-
cules within that pathway to move in a certain direction,
toward either increasing or decreasing the likelihood of
developing the listed pathology or condition.

Quantitative PCR
As described above, RNA was isolated from fetal heart tis-
sue. Using the First-strand cDNA Synthesis kit for miRNA
(Origene, Rockville, MD, Catalog #: HP100042), per
manufacturer’s instructions, RNA was converted to
cDNA. The cDNA was used for differential quantification
of mRNA transcripts Fibroblast Growth Factor Receptor 1
(Fgfr1), Interleukin-18 (Il-18), and Transforming Growth
Factor Beta Receptor 2 (Tgfbr2). ChIP-qPCR was used to
assess the Tgfbr2 promoter loci. As described above, chro-
matin was immunoprecipitated with H3K4me3. DNA was
then probed at multiple locations along the Tgfbr2 pro-
moter region in order to construct a histone peak profile.
Primer design for both the mRNA and ChIP-qPCR are
provided (Additional file 1: Table S4). MRNA was normal-
ized to Beta-Actin (β-Actin), while immunoprecipitated
DNA was normalized to its respective input control.

Fig. 1 Evaluating DNA fragmentation and read quality for chromatin immunoprecipitation (ChIP) sequencing. a Using gel electrophoresis, DNA
fragments were evaluated to determine size and distribution (average size of fragments = 654.3 bp). Two controls and two maternal nano-
TiO2exposed representative samples are shown. Sample quality was assessed using FastQC for both forward and reverse reads (b) before and (c)
after using Trimmomatic. Con = control, Exp =maternal nano-TiO2 exposed, H3K4me3 and K4 = histone 3 lysine 4 tri-methylation, K27 = histone 3
lysine 27 tri-methylation
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Experiments were performed on the Applied Biosystems
7900HT Fast Real-Time PCR system (Applied Biosystems,
Foster City, CA), using 2X SYBR Green Master Mix.
Quantification was achieved using the 2-ΔΔCT method.

Statistics
All measures of significance between the control and ma-
ternal nano-TiO2 exposure groups for the sequencing data
are presented as adjusted P-values. Adjusted P-values are
a composition of standard, unadjusted P-values and the
stringency of the False Discovery Rate (FDR). Differential
expression analysis through DESeq2 implements the Wald
Test, using multiple testing against the null hypothesis
that P-values are uniformly distributed across a data set,
known as the Benjamini-Hochberg procedure. The FDR
for this study was set at 0.05. Z-score significance is deter-
mined as greater than the absolute value of 2. The z-score

is computed as z ¼ x
σx
¼

P
i
xiffiffi
n

p ¼ Nþ−N−ffiffiffi
N

p , where N+ = the

number of molecules following a consistent trend, N− =
the number of molecules following an inconsistent trend,
and N = the number of interactions within a given path-
way. In this way, the z-score, using only values with a sig-
nificant change (P ≤ 0.05) can infer direction of a specific
pathway while accounting for relationship and data bias
and properly weighting the statistical findings (https://
www.qiagenbioinformatics.com/products/ingenuity-path-
way-analysis/). A consistency score is the non-statistical
assignment of confidence to a specific pathway. Where

appropriate, a Student’s t-test was used with all data pre-
sented as ± the standard error mean (SEM). Significance
is determined as P ≤ 0.05.

Results
Animal and Nano-TiO2 aerosol characteristics
Animal number, age, body weight, and exposure condi-
tions are provided (Table 1). Separate, but similar, inhal-
ation exposures were used for the ChIP and RNA
sequencing experiments. No statistical differences were
noted between nano-TiO2 exposure in Experimental
Group 1 (ChiP Seq) and Experimental Group 2 (RNA
Seq). No statistical differences were noted in either pro-
geny weight or total number of pups between maternal
nano-TiO2 exposed or control groups.
Representative nano-TiO2 aerosol characterization

data are presented in Fig. 3. The target particle concen-
tration was 10 mg/m3 (Fig. 3a). The real-time nano-TiO2

mobility diameter was 129 nm (Fig. 3b), and the aero-
dynamic diameter was 143 nm (Fig. 3c). Nanoparticles
were collected on filters, and a representative transmis-
sion electron microscopy image is presented in Fig. 3d.

ChIP sequencing
ChIP sample metrics
To better understand the quality and sample dispersion
within our cohort for the ChIP sequencing experiment,
a series of statistical models were used. To assess the

Fig. 2 Assessing RNA quality for transcriptomic data. a Gel electrophoresis was implemented to visualize 28S and 18S ribosomal RNA quality. b
Cytoplasmic, ribosomal RNA degradation was measured using the Agilent Bioanalyzer 2100. As determined by the RNA Integrity Number (RIN)
(left of sample name) the five least degraded samples were chosen for the control (RIN = 5.88 ± 1.22) and exposed (RIN = 6.18 ± 0.92) groups.
Exposed =maternal nano-TiO2 exposed
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distribution of subpeaks present within the forward and
reverse strands of the H3K4me3 and H3K27me3 immu-
noprecipitations, the average fragment length was deter-
mined for each event using the R package csaw [41].
The cross-correlation graph measures the delay distance,
or number of base pairs, which separate distinctive sub-
peaks, also evaluating the consistency of fragment
lengths within the data set (Fig. 4a and b). Multi-
dimensional scaling (MDS) plots were used to evaluate
individual library homology between both the H3K4me3
and H3K27me3 groups with the R package edgeR [42].
Log fold change (LogFC) determined the differences
between libraries (control, red and maternal nano-TiO2

exposed, blue) within the MDS plots (Fig. 4c and d). To
visualize read coverage, the R packages ChIPpeakAnno
and Gviz were installed [43]. Complex, differential

binding was assessed for both the H3K4me3 (Fig. 4e)
and H3K27me3 (Fig. 4f ) binding loci. Together, these re-
sults suggest that the immunoprecipitation and chroma-
tin fragmentation were successful, and that differential
binding is observed between groups.

ChIP IPA Protein Ontology
Differential Binding data for both the H3K4me3 and
H3K27me3 marks were uploaded and analyzed in QIA-
GEN’s IPA; all changes are shown as maternal nano-
TiO2 exposed condition relative to the control. Diseases
and biological functions (z-score ≥ 2) for H3K4me3 and
H3K27me3 are provided in Additional file 1: Table S1
and S2, respectively. Of the diseases and biological func-
tions listed, one of the most prominent pathways for
H3K4me3 involved infectious disease (Fig. 5a). The heat

Table 1 Animal characteristics

Exposure Group Technique Number of
animals
(N)

Age
(days)

Body
Weight
(grams)

Litter
Size

Pup
Weight
(grams)

Aerosol
Concentration
(mg/m3)

Electrical Low-
Pressure Impactor
(nm)

Scanning Particle
Mobility Sizer
(nm)

Sham Control RNA Sequencing 7 109 ± 7 402 ± 8.84 13 ± 2 4.06 ± 0.16 0 0 0

Nano-TiO2 RNA Sequencing 4 113 ± 2 422 ± 13.34 14 ± 1 3.99 ± 0.22 10.35 ± 0.13 136.80 ± 1.44 134.80 ± 1.24

Sham Control ChIP Sequencing 5 104 ± 2 407 ± 8.09 12 ± 2 5.19 ± 1.02 0 0 0

Nano-TiO2 ChIP Sequencing 6 98 ± 1 376 ± 19.99 9 ± 5 4.88 ± 1.53 10.5 ± 0.05 143.75 ± 2.32 129.43 ± 3.21

Fig. 3 Maternal nano-TiO2 exposure particle characterization for RNA sequencing experiments. a Total aerosol concentration (10 mg/m3) of engineered
nano-TiO2 during maternal exposures. b Nano-TiO2 size distribution (mobility diameter, 129.4 nm) using a scanning mobility particle sizer (SMPS).
c Nano-TiO2 size distribution (aerodynamic diameter, 143.3 nm) using an electrical low-pressure impactor (ELPI). (D) Transmission electron microscopy
image of aerosolized nano-TiO2 collected via a sampling filter during an exposure
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map reveals how changes in molecular signaling could
provide an increase susceptibility to infection in mater-
nal nano-TiO2 exposed offspring. The top canonical
pathways (z-score ≥ 2) altered during maternal nano-
TiO2 exposure are presented (Fig. 5b). In general, the
canonical pathways altered after exposure involve
regulation of growth and cell cycle/apoptosis signaling.
For H3K27me3, the top 10 canonical pathways which

are altered are provided (Fig. 5c). For the promoter re-
gions associated with H3K27me3, the majority of signaling
changes involve cancer and immunity. A heat map for the
toxicological functions of the data representing H3K4me3
is also presented (Fig. 5d). The size and distribution of
each major category is proportional to the z-score, which
revealed three major organs affected: the heart, kidney
and liver. Toxicological pathways associated with the
heart, including congenital heart anomaly, heart failure,
cardiac hypertrophy (not shown), and cardiac dysfunction
(not shown), were found to be significantly decreased in
the maternal nano-TiO2 exposed group. Conversely, toxi-
cological pathways associated with the liver and kidney in-
cluding, renal necrosis and cell death, liver necrosis and
cell death, renal damage, and liver damage (not shown)
were found to be increased. Also, an increase in red blood
cells, and subsequently the hematocrit, were observed.

Increases in H3K4me3 at promoter regions for infection
capacity and growth signaling as well as loci involving kid-
ney and liver dysfunction, suggests epigenetic regulation
which could significantly alter an organism’s susceptibility
to disease and potential pre-disposition to future insult.
The lack of changes shown for H3K27me3 may suggest
an alternative repressive mark implemented as the
bivalent companion of H3K4me3.

RNA sequencing
RNA sample metrics
The raw and normalized counts from the RNA sequen-
cing experiment were subjected to a variety of statistical
modelling, using the DESeq2 package in R [44], in order
to better understand sample parameters. To visualize the
variance of the normalized counts data means, the rlog
function was used (Fig. 6a). For low-count genes, trans-
formation using rlog, a log2 scale which normalizes data
in reference to the library size, helps to better visualize
variance-means. Fig. 6a shows limited outliers within the
data set for the control vs. control, but increasing vari-
ance in the control vs. maternal nano-TiO2 exposed.
Sample-to-sample distance was measured using the Poi-
ClaClu package in R. Sample dissimilarity is depicted as
a heat map (Fig. 6b), calculated from the original, not

Fig. 4 Chromatin immunoprecipitation (ChIP) sequencing fragment analysis and sample distribution. To measure the distance between subpeaks
and find the maximum correlation, the cross-correlation function (CCF) was used to assess a H3K4me3 (248 bp) and (b) H3K27me3 (247 bp).
Multi-dimensional scaling (MDS) plots indicate the log fold change (logFC) between samples within the (c) H3K4me3 and (d) H3K27me3 groups,
describing sample-to-sample distances. Representative histone peaks are shown for differential binding regions (P ≤ 0.05) for both (e) H3K4me3
and (f) H3K27me3. Con = control, Exp =maternal nano-TiO2 exposed, H3K4me3 = histone 3 lysine 4 tri-methylation, H3K27me3 = histone 3 lysine
27 tri-methylation, Wnt5a = Wnt Family Member 5A, Rn5-8 s = 5.8S ribosomal RNA for Rattus norvegicus
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normalized count data. The heat map shows general dis-
similarity between the maternal nano-TiO2 exposed and
control groups, with the exception of one of the control
samples. Another measure implemented for determining
sample distance was a multi-dimensional scaling (MDS)
plot based on the rlog-normalized counts (Fig. 6c).
Again, the plot shows a general dissimilarity between the
maternal nano-TiO2 exposed and control cohorts. After
performing differential expression analysis with DESeq2,
we examined the gene with the lowest associated p-value
(Fig. 6d). The plot illustrates the similar expression of
the gene within each group, while showing the dispar-
ities across groups. In Fig. 6e, a MA-plot is used to illus-
trate the number of genes (red) that fall below the P-
value of 0.05. The statistical models used to assess the
RNA sequencing samples indicate that normalized count
values between groups are similar and that sample hom-
ology is close within groups, but not across groups.

RNA IPA protein ontology
After differential expression analysis processing in R, data
was uploaded and analyzed in QIAGEN’s IPA; all changes
are shown as maternal nano-TiO2 exposed condition rela-
tive to the control. Diseases and biological functions (z-

score ≥ 2) for the RNA are provided in Additional file 1:
Table S3. Again, a prominent pathway that was found to
be increased in the maternal nano-TiO2 exposed animals
involved infectious diseases (Fig. 7a). Both the open pro-
moter conformation (H3K4me3) and the RNA transcript
expression reveal an increased propensity for infection.
The top canonical pathways (z-score ≥ 3.45) altered during
maternal nano-TiO2 exposure are presented (Fig. 7b). The
canonical pathways altered primarily involve inflammatory
signaling and organismal development. Examining what
factors could be causing differential regulation after
maternal nano-TiO2 exposure, we wanted to evaluate
molecular regulator effects. The top molecule (consistency
score ≥ 10.453) suggested to play a role in differential
regulation of pathways was microRNA-145 (Fig. 7c).
In Fig. 7c, it reveals how decreased expression of

microRNA-145 can lead to increased expression of path-
ways involving cell growth and proliferation. A heat map
for the toxicological functions of the data representing the
RNA is also shown (Fig. 7d). The size and distribution of
each major category is proportional to the z-score and,
again consistent with the H3K4me3 mark, three major or-
gans were shown to be affected: the heart, kidney and
liver. Toxicological pathways associated with the heart,

Fig. 5 Assessment of disease and signaling pathways altered epigenetically during maternal nano-TiO2 exposure. a One of the primary disease
pathways (z-score = 9.35 ± 1.89) altered epigenetically during exposure was the increased susceptibility to infection in the H3K4me3 group. Disease
and toxicological pathways are constructed from specific, individual canonical signaling pathways. b Depicts the top canonical pathways for H3K4me3
(z-score≥ ±2.0) that are significantly (P≤ 0.05) impacted, as indicated by the threshold line. c The top canonical pathways for H3K27me3 (P≤ 0.05) are
also shown following exposure (smaller p-values are associated with increasing red intensity for pathways). d Toxicological functions predicted for
genes mapped to H3K4me3 marks
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including congenital heart anomaly, cardiac hypoplasia,
heart failure, cardiac fibrosis, and cardiac damage, were
found to be significantly decreased in the maternal nano-
TiO2 exposed group. Alternatively, toxicological pathways
associated with the liver and kidney including, renal ne-
crosis and cell death, liver hyperplasia/hyperproliferation,
renal proliferation, renal damage, and renal autophagy
were found to be increased. As reported for the H3K4me3
promoter regions, increased RNA transcription of genes
involving red blood production are shown. Similar to the
epigenetic modification H3K4me3, the differential expres-
sion of transcripts follows a similar pattern of increased
infection and growth of the organism, with increased
molecular markers of dysfunction in the liver and kidney.

Epigenetic regulation of transcription
In order to examine how changes between the
H3K4me3 mark and RNA transcript data aligned, we
performed a comparative analysis through QIAGEN’s
IPA, all changes are shown as maternal nano-TiO2
exposed condition relative to the control. The top ca-
nonical pathways (z-score ≥ 4.5) for both the transcript
and ChIP data are shown (Fig. 8a). The combined data
sets illustrate the common pathways involving both

inflammation and organismal growth signaling. For toxi-
cological functions, the molecular profile for cardiac dys-
function is significantly decreased compared to the
controls, while kidney dysfunction is increased (Fig. 8b).
A heat map for the cumulative diseases and biological
functions is shown (Fig. 8c). The heat map depicts two
major molecular changes that could impact the pheno-
type: increased survival and increased susceptibility to
infection. In Fig. 8d, canonical pathways are sorted by p-
value, depicting pathways with large sets of molecules
having significantly altered expression levels. Although,
the mitochondrial dysfunction and oxidative phosphoryl-
ation pathways do not have significant z-scores and a
very small contribution of changes coming from the
transcript data, Fig. 8b demonstrates the epigenetic
changes occurring at these loci to a large segment of
genes. Figure 8e illustrates the NF-ĸB (Nuclear Factor
kappa-light-chain-enhancer of activated B cells) signaling
pathway for the RNA (right) and H3K4me3 (left)
sequencing experiments. The comparative analysis
suggests that maternal nano-TiO2 exposure can cause
significant changes to how the development of the pro-
geny takes place, changing the epigenetic landscape,
which can directly affect transcript abundance.

Fig. 6 Sample-to-sample distribution and differential expression analysis for transcriptomic analysis. a Assessment of normalized counts between
control vs. control (left) and control vs. maternal nano-TiO2 exposed (right) using a log2 transformed scale. b Measure of raw count matrices and
(c) normalized count matrices to determine variance between samples. d The top differentially regulated gene between groups was determined
through the normalized counts for each sample. e The MA-plot reveals the differentially expressed genes (red, P≤ 0.05) in comparison to genes
with non-significant change between groups (grey). The top differentially regulated gene is highlighted (blue). Exposed and Exp =maternal
nano-TiO2 exposed, Car1 = carbonic anhydrase 1
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Molecular validation of sequencing
To further confirm the reliability of the sequencing data,
we implemented qPCR to examine molecules involved
in the NF-ĸB Pathway, which are not shown in the illus-
trative Fig. 8d, e. The mRNA levels of Fgfr1, Il-18, and
Tgfbr2 are reported, and coincide with similar expres-
sion profiles seen in the sequencing data (Fig. 9a). In
Fig. 9a, the data obtained from RNA sequencing (grey
bars) are used as a reference to validate the expression
profile of the maternal nano-TiO2 group when running
qPCR. Likewise, we also wanted to use ChIP-qPCR to
validate that histone modifications were also reliably re-
ported, with the ChIP-Seq revealing epigenetic changes
at the Tgfbr2 promoter region. We confirmed the
H3K4me3 histone modifications for Tgfbr2, showing
higher H3K4me3 association at its promoter region
(Fig. 9b). The increased magnitude of the histone peak
of the maternal nano-TiO2 group, Fig. 9b, suggests the
increased abundance of H3K4me3 and active transcrip-
tion of the Tgfbr2 gene. Tgfbr2 provides an explicit ex-
ample of how genes reported to be epigenetically altered
(ChIP-Seq, through H3K4me3 localization at the Tgfbr2
promoter region) with subsequent changes in transcrip-
tion (RNA-Seq, reporting increased expression of Tgfbr2

transcripts) can be further validated using other molecu-
lar techniques, such as qPCR. An overview of the experi-
mental design is illustrated in Fig. 9c. Briefly, the figure
provides an example of suggested functional outcomes
related to maternal nano-TiO2 exposure, with the link
between the exposure paradigm and end function being
fetal, epigenetic consequences.

Discussion
The gene expression and epigenetic analyses performed
in this study provide the first evidence that maternal
ENM inhalation may result in significant pathway alter-
ations in the fetus. The two most prominently impacted
mechanisms are: inflammatory signaling, and cardiac-
renal-hepatic pathology/toxicity.
The nano-TiO2 exposure paradigm used herein

(10 mg/m3, 4-6 h) resulted in a calculated lung depos-
ition of approximately 217 μg. This lung burden,
achieved over 7 days of exposure in the second half of
gestation, has been previously shown to impair uterine
arteriolar reactivity by almost 50% [40]. To estimate how
this lung burden compares to what a human may experi-
ence, alveolar surface areas must be known [32]. The rat
alveolar surface area is 0.4 m2/lung. Therefore, the rat

Fig. 7 Assessment of disease and signaling pathways altered transcriptionally during maternal nano-TiO2 exposure. a Similar to the activation by
H3K4me3, transcriptional upregulation of genes associated with increased susceptibility to infection (z-score = 2.02 ± 0.96) was found. b The top
canonical pathways (z-score≥ ±3.45) that are significantly (P ≤ 0.05) impacted transcriptionally, as indicated by the threshold line. The canonical
pathways for the RNA sequencing reveal a significant increase in inflammatory and growth signaling. c The top regulator (consistency score = 10.453)
determined through pathway analysis of gene expression (arrows = activation, bars = repression). Increasing gene activation (red) and suppression
(blue) reveal targeting of multiple cell functions. d Toxicological functions predicted for transcript abundance in the RNA sequencing experiment
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burden of 217 μg/lung would result in 542.5 μg/m2.
Given that the human alveolar surface area is 102 m2,
the equivalent human burden of this exposure paradigm
would be 55.3 mg. The next logical question is how long
would it take to achieve this burden in humans. In this
regard, lung burden may be calculated as:

nano−TiO2 aerosol concentration �minute ventilation
�exposure duration � deposition fraction;

with the following values:

55:3 mg ¼ nano−TiO2 aerosol concentration
�7600 ml= min � 8 hr=day � 60 min=hrð Þ
�14%;

and therefore:

55:3 mg ¼ nano−TiO2 aerosol concentration
�0:51 m3=day:

The National Institute for Occupational Safety and
Health (NIOSH) Recommended Exposure Limit (REL),
or aerosol concentration for nano-TiO2 is 0.3 mg/m3

(DHHS, 2011). This would result in a lung burden of
0.15 mg/day. Whereas, the Occupational Safety and
Health Administration (OSHA) Permissible Exposure

Limit is 5 mg/m3 (DHHS 2011). This would result in a
lung burden of 2.55 mg/day. Considering the NIOSH
REL and OSHA PEL together, it would require 1.45
working years or 21.7 working days (respectively) for a
human to achieve comparable lung burdens with the
exposure paradigm used herein. Because the human ges-
tational period is 9 months, we consider our exposure
paradigm highly relevant to the worker population.
Contrary to the functional deficits seen in the young

adult [20, 25] we found that both the transcriptomic and
epigenetic data support increased cardiac function
(Figs. 5d and 7d). Though this seems paradoxical, we
suggest that the interplay between the heart, liver, and
kidneys is vital in understanding the pathology associ-
ated with maternal nano-TiO2 exposure. It is equally
plausible that as hematocrit increases, viscosity of the
blood also increases, requiring an elevation in contractile
force or a drop in peripheral resistance. Alternatively, it
is possible that disruptions in maternal-fetal perfusion
balances occur. The pulmonary exposure of the mother
is well described, but the secondary effect(s) on the de-
veloping progeny is/are likely to come through impacts
on the maternal/fetal circulation. Maternal nutrients are
delivered to the placenta via the arterial circuit, if blood
flow is inadequate, then fetal compensation must occur

Fig. 8 Comparison of epigenetic regulation (H3K4me3 and H3K27me3) and transcriptional changes. a Top canonical pathways, ranked by z-score,
which are changed between groups. b Top toxicological functions, ranked by z-score, which are changed between groups. c Top diseases and
biological functions, ranked by z-score, which are changed between groups. d Top canonical pathways, ranked by cumulative P-value, which are
changed between groups. e Example of one of the top canonical pathways altered during maternal nano-TiO2 exposure. NF-ĸB signaling changes
transcriptionally (right) and epigenetically through H3K4me3 (left) (green = decreased expression, red = increased expression). NF-ĸB = nuclear factor
kappa-light-chain-enhancer of activated B cells
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to support proper nutrient delivery via the umbilical vein
to the fetal portal circulation.
At the fetal stage, the heart plays a less significant role

in energetics [45]. Whereas, the liver and kidneys play piv-
otal roles in blood conditioning at this stage of develop-
ment, and these signaling pathways are altered by
maternal ENM inhalation during gestation (Fig. 5). We
hypothesize that potential liver and kidney damage from
either inflammation, direct ENM translocation or a com-
bination may result in an increased hematocrit, and or
maternal-fetal perfusion balance. Together, this may sug-
gest that in maternal nano-TiO2 exposed progeny, the
functional deficits seen later in development may be a re-
sult of this initial hepatic and renal insult, with subsequent
cardiac overcompensation which may represent a protect-
ive mechanism. These findings correspond to reports of
hepatic DNA damage in newborn murine offspring after
maternal nano-TiO2 inhalation [46]. Impairments in renal
function may have profound effects on tubuloglomerular
feedback, the renin angiotensin system, and/or osmotic
regulation. These impairments may collectively or

individually directly influence cardiovascular health
throughout prenatal and postnatal development.
MicroRNA (miRNA) are well known to be altered by

transcriptomic and epigenetic regulators. When expressed,
miRNA broadly regulate cellular function [47] and have
been implicated in numerous epigenetic pathways [48]. In
Fig. 7c transcriptomic data is provided that reflects the most
consistently altered regulator after maternal nano-TiO2 in-
halation. Decreased expression of miRNA-145 has been
suggested to increase protein synthesis of targets directly in-
volved in signaling events that promote organism growth
and development. The role of altered miRNAs in progeny
after maternal ENM inhalation is poorly understood, and
may provide a better understanding of the relationship
between ENM toxicities, epigenetics, and gene expression.
Figure 8c presents an overview of the two primary cell

signaling pathways that are altered during gestational ex-
posure: immunity and development. Parameters of or-
ganismal health and development are presented largely
as molecular markers for cardiac signaling and function.
The increased gene expression of molecular markers

Fig. 9 Validation of sequencing and model overview. a The mRNA of Fgfr1, Il-18, and Tgfbr2 were assessed in the sham (green, Sham-Control)
and maternal nano-TiO2 (red, Nano-TiO2 Exposed) exposed progeny, reference to the RNA sequencing observed change (grey, Sequence). Expres-
sion was normalized to the β-Actin reporter gene. b Tgfbr2 was further characterized through ChIP-qPCR of H3K4me3 to measure the binding
affinity of the modified histone at the Tgfbr2 promoter loci in the Sham-Control (green) and maternal nano-TiO2 (red) exposed progeny. Values
were normalized to each sample’s input control. Tick marks represent the chromosomal location of each qPCR measurement, ranging from
124,318,034 to 124,319,434 on chromosome 8. c Schematic overview of the experimental model for nano-TiO2 maternal exposure and examination of
the fetal progeny. As an example, the changes in Tgfbr2 are used to illustrate how epigenetic alterations through modification of chromatin can lead
to increased expression of the mRNA transcript. Finally, the results of the study suggest that the gestational exposure paradigm impacts the heart,
through increased function, while the liver and kidney have a detriment in function. Values are expressed as means ± SE. * = P≤ 0.05. Fgfr1 = Fibroblast
Growth Factor Receptor 1, Il-18 = Interleukin-18, Tgfbr2 = Transforming Growth Factor Beta Receptor 2, H3K4me3 = histone 3 lysine 4 tri-methylation,
ChIP = Chromatin Immunoprecipitation
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associated with infection and immunity may indicate the
likelihood of autoimmune disorders associated with an
overactive immune system. This is most evident when
considering the inflammatory pathways indicated in
Fig. 8a and the target organ (kidney) indicated in Fig. 8b
reflected by an increased susceptibility as shown in
Fig. 8c. These molecular markers may also represent the
consequence presented in Fig. 8a of a proinflammatory
environment; such an environment has been associated
with chronic conditions including cardiovascular disease
and cancer [49]. Pulmonary exposure to carbon black
nanoparticles has also been identified to contribute to
the development of immunotoxicity, particularly in
lymphoid organs [22]. Interestingly, organismal death
and morbidity/mortality appears to be decreased in
maternal nano-TiO2 offspring, which may again seem
counterintuitive. However, we speculate this may reflect
a greater systemic response to compensate for the
numerous other mechanisms disturbed by ENM
inhalation during gestation.
To better identify the future consequences of ENM ex-

posure, the significance of the pathways was represented
as the change in P-value (Fig. 8d). Mitochondrial dysfunc-
tion and oxidative phosphorylation appeared to have the
greatest changes in methylation, indicating that future
complications in these pathways may occur. Given their
widespread involvement, this epigenetic predisposition
may manifest in any tissue. In other words, the epigenetic
changes associated with energetics may reflect significant
alterations that occur during fetal development. It is
important to indicate that these changes may not be mani-
fested in functional transcriptomic or proteomic changes
until postnatal development or even later into adulthood.
If correct, this would be consistent with the Barker
Hypothesis and DOHaD.
Maternal nano-TiO2 exposure is also associated with a

pronounced effect on key inflammatory pathways in the
exposed progeny. In Fig. 8e, protein kinase B (AKT) signal-
ing is decreased, potentially resulting in an impairment in
calcium-independent nitric oxide signaling which would
likely result in dysfunctional endothelium-dependent re-
sponses. Indeed, calcium dependent and independent
mechanisms, as well as endothelial arteriolar dilation are
significantly impaired at 3-4 weeks of age [50]. Further-
more, augmented NF-κB signaling via both alternate and
canonical pathways [51] has been reported. Maternal
nano-TiO2 exposure significantly activated the expression
of the Lymphotoxin Beta Receptor (LTBR) gene, while
suppressing the expression of the regulating enzyme In-
hibitor of NF-κB Kinase Subunit Alpha (IKKα) Fig. 8e.
This is important in the negative feedback of the NF-κB
canonical signaling that limits inflammatory gene activa-
tion and suggests that more robust inflammatory re-
sponses are possible as evidenced in Fig. 8a. Furthermore,

NF-κB plays a central role in the development of inflamma-
tion through further regulation of genes encoding not only
pro-inflammatory cytokines, but also adhesion molecules
such as E-selectin, VCAM-1 (vascular cell adhesion
molecule-1) and ICAM-1 (intercellular adhesion molecule-
1), chemokines, and inducible nitric oxide synthase (iNOS)
[52, 53]. Figure 8e also reflects a significant increase in
interleukin-8 (IL-8) signaling, a major chemokine associ-
ated with neutrophil chemotaxis and degranulation se-
creted by macrophages and endothelial cells during acute
inflammatory responses [54]. Considered jointly, uncon-
trolled activation of NF-κB and IL-8 pathways in maternally
exposed progeny may predispose towards endothelial-
dependent dysfunction and leukocyte adhesion.

Conclusion
The pathway analyses reported herein indicate dysfunc-
tion in many physiologic systems. As it is not possible to
functionally verify each of these functional implications,
the primary goal of the manuscript is to identify those
systems as a priority for future study. Systemic impair-
ments associated with acute and chronic nanomaterial
exposures is an evolving field as nanotechnology con-
tinues to expand. Maternal and fetal outcomes following
gestational exposures have recently been considered.
While initial functional microvascular assessments have
begun, little is known regarding epigenetic alterations
within the F1 generation. The findings from this study
describe epigenetic changes in the progeny of mothers
exposed to nano-TiO2 aerosols during gestation. The
evidence of the study is strengthened by the use of two
separate cohorts to separately probe the transcriptomic
and epigenetic alterations, suggesting that even in separ-
ate discrete experimental populations, changes to the
epigenome and RNA transcript levels align and similar
exposure paradigms yield consistent results. Changes in
the RNA transcripts and histone modifications on DNA
suggest that maternal nano-TiO2 progeny exhibit a
propensity toward hepatic and renal disease, increased
inflammatory signaling, and growth/survival while show-
ing decreased cardiac dysfunction. What remains to be
understood is if and/or how far these epigenetic changes
persistent into adulthood, the dose-response relation-
ships, and what stage of development is most sensitive
to maternal ENM exposure.
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Primers for the mRNA-qPCR experiments were designed using Primer-BLAST
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). MRNA primers were
designed to produced amplicons 100 – 250 bp in length. ChIP-qPCR primers
were designed spanning a 1400 bp loci in the promoter region of the Tgfbr2
gene. Primers were designed to measure chromatin H3K4me3 modifications
every 200 bp. Primer sequences were constrained to 60-100 bp amplicon
lengths, in order to appropriately span sheered chromatin. All primer designs
were performed against the Rattus norvegicus July 2014 (RGSC 6.0/rn6)
genome build. ChIP = Chromatin Immunoprecipitation. (DOCX 41 kb)
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