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Hathaway QA, Pinti MV, Durr AJ, Waris S, Shepherd DL, Hollander JM.
Regulating microRNA expression: at the heart of diabetes mellitus and the mito-
chondrion. Am J Physiol Heart Circ Physiol 314: H293–H310, 2018. First pub-
lished October 6, 2017; doi:10.1152/ajpheart.00520.2017.—Type 2 diabetes melli-
tus is a major risk factor for cardiovascular disease and mortality. Uncontrolled type 2
diabetes mellitus results in a systemic milieu of increased circulating glucose and fatty
acids. The development of insulin resistance in cardiac tissue decreases cellular glucose
import and enhances mitochondrial fatty acid uptake. While triacylglycerol and cyto-
toxic lipid species begin to accumulate in the cardiomyocyte, the energy substrate
utilization ratio of free fatty acids to glucose changes to almost entirely free fatty acids.
Accumulating evidence suggests a role of miRNA in mediating this metabolic transi-
tion. Energy substrate metabolism, apoptosis, and the production and response to excess
reactive oxygen species are regulated by miRNA expression. The current momentum
for understanding the dynamics of miRNA expression is limited by a lack of under-
standing of how miRNA expression is controlled. While miRNAs are important
regulators in both normal and pathological states, an additional layer of complexity is
added when regulation of miRNA regulators is considered. miRNA expression is
known to be regulated through a number of mechanisms, which include, but are not
limited to, epigenetics, exosomal transport, processing, and posttranscriptional seques-
tration. The purpose of this review is to outline how mitochondrial processes are
regulated by miRNAs in the diabetic heart. Furthermore, we will highlight the
regulatory mechanisms, such as epigenetics, exosomal transport, miRNA processing,
and posttranslational sequestration, that participate as regulators of miRNA expression.
Additionally, current and future treatment strategies targeting dysfunctional mitochon-
drial processes in the diseased myocardium, as well as emerging miRNA-based
therapies, will be summarized.
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INTRODUCTION

Diabetes mellitus affects 29.1 million Americans and 25.9%
of Americans age 65 yr and older. Adults with diabetes
mellitus have two to four times the rate of mortality from heart
disease compared with those without diabetes mellitus, and
68% of diabetic patients aged 65 yr and older die of heart
disease (3, 4). The diabetic heart is metabolically characterized
by insulin resistance, reduced cellular glucose import and

oxidation, and increased mitochondrial fatty acid import and
oxidation (131). This chronic alteration in energy substrate
utilization and loss of the dynamic ability of the myocardium
to metabolically adapt to its environment, such as upregulating
anaerobic glycolysis during cardiac ischemia, initiates a path-
ological state termed diabetic cardiomyopathy (5, 92). In-
creased cardiac hypertrophy and fibrosis are structural changes
observed in diabetic cardiomyopathy that are accompanied
molecularly by increased oxidative stress, mitochondrial dys-
function, and cardiomyocyte apoptosis (28, 46, 69, 111, 173).
Diabetic heart failure is the culmination of these pathologic
insults that is characterized by severe contractile dysfunction of
the myocardium (43).
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The proteomic alterations of the heart in the diabetic state
have been well characterized. Metabolically, the decrease in
glucose import and oxidation in the diabetic cardiomyocyte is
associated with decreased expression of insulin-stimulated glu-
cose transporter 4 (GLUT4) and decreased activity of pyruvate
dehydrogenase (PDH) (131). The increase in mitochondrial
fatty acid import and oxidation is found in conjunction with
decreased acetyl-CoA carboxylase activity, decreased malo-
nyl-CoA concentration, increased carnitine palmitoyl trans-
ferase I activity, and increased �-hydroxyacyl-CoA dehydro-
genase activity (131). Increased reactive oxygen species (ROS)
generation in diabetic cardiomyopathy results from contributors
such as excess fatty acid oxidation, increased NADPH oxidase
activity, and uncoupled nitric oxide synthases (NOS) (69). What
contributes to increased cardiomyocyte apoptosis in the diabetic
setting is the decreased expression of the antiapoptotic protein
Bcl-2 and increased expression of the proapoptotic protein p53
(108, 171). At the heart of energy substrate metabolism, ROS
generation, and apoptosis lies the mitochondrion.

Although transcription factor regulation of gene expression,
posttranslational modification, and substrate inhibition via neg-
ative feedback have shown to be foundational in regulating
protein expression and activity, miRNA and epigenetic mech-
anisms of regulation have more recently emerged (6). miRNAs
are single-stranded noncoding RNA molecules, ~22 nt long,
that associate into a multiprotein RNA-induced silencing com-
plex (RISC), which inhibits its target mRNA species from
being translated into a functional protein (13). Differential
expression of miRNAs have been characterized in a variety of
cardiovascular conditions, including atherosclerosis, myocar-
dial infarction, and heart failure to modulate processes, such as
energy substrate metabolism, fibrosis, and cardiac remodeling
(104, 126, 168). Nuclear- and, more recently, mitochondrial

genome-encoded proteins, which function in the mitochondria,
have been shown to be regulated by miRNA (12, 15, 36, 72).
Because cardiomyocyte mitochondria are central to the patho-
genesis of diabetic heart disease, the first section of this review
will focus on miRNA regulation of key pathological pathways
intersecting at the mitochondrion. The following section will
focus on the role of regulation on the miRNA regulator,
including epigenetic, exosomal, processing, and posttranscrip-
tional control (Fig. 1). Finally, treatment strategies for cardio-
myocyte energy substrate metabolism, pharmacological ma-
nipulation, and miRNA-based therapies for the treatment of
diabetic heart disease will be discussed.

miRNA REGULATION OF THE MITOCHONDRION IN THE
DIABETIC HEART

miRNAs can be transcribed through two primary pathways,
either a canonical or noncanonical pathway (61, 97, 156). In the
canonical pathway, the pri-miRNA is transcribed from its existing
exon and intron, containing one to several hairpin loop structures.
After transcription, DiGeorge Syndrome critical region 8
(DGCR8) and Drosha, known as the microprocessing complex,
cut the pri-miRNA in the nucleus, resulting in a shorter (~65 nt)
pre-miRNA (57, 63). The pre-miRNA is then exported through
exportin-5 and RanGTP (161). Finally, in the cytoplasm, Dicer
edits the pre-miRNA, resulting in the mature miRNA (19–22 nt),
which can then associate with the RISC. In the noncanonical
pathway, hairpin structures within introns can be spliced out,
resulting in pre-miRNAs that are referred to as mirtrons (156).
After splicing, the mirtrons proceed through the same pathway as
canonical miRNA to be exported from the nucleus.

After export from the nucleus, miRNAs have been impli-
cated in regulating the expression of proteins essential to
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Fig. 1. Regulation of miRNA regulators. The ex-
pression of miRNAs is controlled through multiple
factors. Epigenetic regulation includes hypermeth-
ylation of the miRNA-184 CpG loci, pri-miRNA-
208b tethering to increase enhancer of zeste ho-
molog 2 binding, and miRNA interactions with
DNA methyl transferase (DNMT)1, DNMT3a, and
DNMT3b. Regulation of miRNA expression
through miRNA processing is dependent on Dicer
expression (miRNA-103) and protein-protein in-
teractions with Dicer (miRNA-21). Other proteins,
such as GTPase-activating protein-binding protein
1, can affect processing (miRNA-1). Long noncod-
ing RNA (lncRNA) can regulate miRNA expres-
sion by acting as a “sponge,” sequestering native
and exogenous miRNAs, such as miRNA-188-3p,
miRNA-539, and miRNA-489. Also, exosomal re-
lease/transport of miRNA-1, miRNA-21, and
miRNA-133a can alter miRNA expression.
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mitochondrial health. Recently, miRNAs have been found to
affect mitochondrial function through targeting pathways, in-
cluding energy substrate metabolism, ROS generation, and
apoptosis. This section will focus on miRNA regulation of
these processes within the cardiomyocyte in the context of the
diabetic heart (Table 1).

miRNA REGULATION OF ENERGY SUBSTRATE METABOLISM
IN THE DIABETIC HEART

miRNA regulation of insulin signaling and glycolysis. The
downregulation of insulin signaling components in the diabetic
heart is influenced by miRNA regulation. Li et al. (84) showed
that let-7 miRNA was overexpressed in the myocardium of
streptozotocin (STZ)-induced diabetic rats, whereas the protein
expression of insulin-like growth factor 1 receptor (IGF-1R),
insulin receptor (IR), and GLUT4 were significantly lower.
Interestingly, they found that inhibition of let-7 via the admin-
istration of let-7 antimiR conferred cardioprotection against
ischemia-reperfusion injury through increased expression of
phosphorylated Akt and phosphorylated mammalian target of
rapamycin (84). IR and IR substrate 2 (IRS2) have been
validated as direct targets of let-7, and the observation of a
normalization of IGF-1R, IR, and GLUT4 expression upon
administration of let-7 antimiR supports the assertion that let-7
targets insulin signaling and the glucose transport pathway (84,
175). Furthermore, Greco et al. (56) found that miRNA-216a
was overexpressed in failing human hearts of patients with and

without diabetes mellitus and that its expression was negatively
correlated with left ventricular ejection fraction. miRNA-216a
targets and represses caveolin 2, a scaffolding protein and
substrate of the IR that helps to recruit IRS-1 to the IR and
propagate insulin signaling (56, 81). The role of miRNA-216a
overexpression in regulating intermediary metabolism in heart
failure patients with and without diabetes is unanswered and of
much interest to the field. miRNA-199a-3p has been observed
to be overexpressed in STZ-induced diabetic mice, and it also
has a validated target of caveolin 2 (44, 121). Zheng et al. (172)
showed that miRNA-195 is overexpressed in STZ-induced and
db/db mouse hearts as well as in cardiomyocytes isolated from
db/db mice, whereas sirtuin 1 (Sirt1) protein levels were signifi-
cantly decreased. Inhibition of miRNA-195 increased Sirt1 ex-
pression in diabetic mice (172). Sirt1 is a downstream effector of
the insulin signaling pathway, indicating that miRNAs not only
serve to fine tune IR and IRS2 but also regulate the expression of
proteins further along the insulin signaling cascade (41). Alto-
gether, miRNA targeting of insulin signaling components of the
diabetic heart may help explain the proteomic alterations of this
pathway observed in the diabetic condition.

miRNA REGULATION OF FATTY ACID TRANSPORT, FATTY
ACID OXIDATION, TRICARBOXYLIC ACID CYCLE,
ELECTRON TRANSPORT CHAIN, AND ATP PRODUCTION

The upregulation of fatty acid import and oxidation in the
diabetic heart is impacted by miRNA modulation. Chen et al.

Table 1. miRNA regulation of mitochondrial pathways in the diabetic heart

miRNA Environmental Regulation
Expression in the

Diabetic Heart miRNA Target miRNA Target Function Diabetic Model Source

let-7 Pro Upregulated Insulin recptor, insulin
receptor substrate 2

Insulin signaling STZ,
ischemia-reperfusion

9, 15, 77

miRNA-195 Upregulated Sirtuin 1 Insulin signaling STZ; db/db 1, 6, 156
miRNA-216a Upregulated Caveolin 2 Insulin signaling Human diabetic; ischemic

heart failure
50, 74

miRNA-199a-3p Upregulated Caveolin 2 Insulin signaling STZ 3, 11, 39
miRNA-133a Epi, Exo Downregulated Testicular receptor 4 Fatty acid transport STZ 27, 95
miRNA-210 Upregulated Iron-sulfur cluster

assembly protein
1/2

ETC Complex I Human diabetic; ischemic
heart failure

20, 50

miRNA-141 Upregulated Slc25a3 Mitochondrial phosphate
carrier

STZ 12

miRNA-378 Upregulated ATP6 ATP production STZ 66
miRNA-29a Downregulated Peroxisome

proliferator-
activated receptor-�
coactivator-1�

Fatty acid oxidation STZ 39, 81

miRNA-30c Downregulated p53 Apoptosis Human diabetic; rat
diabetic
cardiomyopathy; high
glucose-treated H9C2

100

miRNA-181a Downregulated p53 Apoptosis Human diabetic; rat
diabetic
cardiomyopathy; high
glucose-treated H9C2

100

miRNA-30d Upregulated FOXO3a Survival STZ; high glucose-treated
H9C2

8, 14, 78

miRNA-34a Upregulated Bcl-2 Survival High glucose-treated
H9C2

154

miRNA-1 Exo, Pro Upregulated Bcl-2 Survival STZ; high glucose-treated
H9C2

9, 14, 70

The differential expression of each miRNA species in diabetes is indicated along with its protein target. The process or pathway the protein participates is also
shown. The models in which the reported observations have been made are noted. Environmental regulation refers to the participation of the miRNA in either
epigenetic (Epi), exosomal transport (Exo), or miRNA processing (Pro) pathways known to influence the diabetic cardiovascular system. STZ, streptozotocin.
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(30) demonstrated that miRNA-133a was significantly de-
creased in the hearts of STZ-induced diabetic mice and that
miRNA-133a was a direct regulator of testicular receptor 4
(TR4), which induces the expression of lipid importer CD36
and promoter of lipid accumulation through solute carrier
family 27 member 1 (Slc27a1/FATP1) (102). This could help
to explain the increase in CD36 expression in cardiac tissue of
STZ-induced diabetic rats that has been reported (101). Perox-
isome proliferator-activated receptor (PPAR)-� is the primary
transcription factor responsible for the fatty acid oxidation
gene expression program (117). PPAR-� coactivator (PGC)-
1�, an essential coactivator of PPAR-� and inducer of medi-
um-chain acyl-CoA dehydrogenase, has been found to be
directly regulated by the miRNA-29 family (miRNA-29a-c)
(86, 88). Interestingly, miRNA-29a has been found to be
decreased in STZ-induced diabetic hearts, which may help
explain the induction of PPAR-� and increased fatty acid
oxidation (44). Greco et al. (56) observed that miRNA-210 is
upregulated in failing diabetic human hearts compared with
failing nondiabetic human hearts. miRNA-210 is a known
negative regulator of iron-sulfur cluster assembly scaffold
protein ISCU1/2, which play essential roles in the function of
aconitase and complex I of the electron transport chain (23).
Baseler et al. (15) observed a significant upregulation of
miRNA-141 in STZ-induced diabetic mice and found that
miRNA-141 is a direct negative regulator of solute carrier
family 25 member 3 (Slc25a3), which is essential for inorganic
phosphate import into the mitochondrial matrix and thus ATP
synthesis. It has also been shown that miRNA-378 was over-
expressed in interfibrillar mitochondria (IFM), mitochondria
located between the myofibrils, of STZ-induced diabetic mice
and that miRNA-378 is a direct negative regulator of ATP
synthase F0 component ATP6 (72). These observations provide
compelling evidence that miRNAs play a critical role in the
regulation of energy metabolism in the diabetic heart.

RECIPROCAL REGULATION OF miRNA AND ROS IN THE
DIABETIC HEART

Oxidative stress has been shown to be a result of, and cause
of, miRNA dysregulation. Saito et al. (113) demonstrated that
glucose fluctuations in STZ-induced diabetic rats increased
cardiomyocyte miRNA-200c and miRNA-141 levels, with an
accompanying increase in ROS generation and upregulation of
NADPH oxidase and thioredoxin-interacting protein, while
decreasing catalase and superoxide dismutase activities. As
glycemic control has been shown to attenuate some of the
peripheral diabetic symptoms, diabetic cardiomyopathy pro-
gresses even after blood glucose normalization. One possible
explanation for this finding comes from a study showing that even
after glycemic control in STZ-induced diabetic mice, miRNA
dysregulation of many myocardial damage pathways, includ-
ing oxidative stress (dysregulated miRNA-221, miRNA-
146a, miRNA-34a, miRNA-210, miRNA-19b, miRNA-27a,
miRNA-155) persisted (33). Because of its upregulation in
cardiac fibrosis, hypertrophy, and oxidative stress in both
diabetic and insulin-treated groups compared with control,
miRNA-125b seems to have broad-ranging effects in medi-
ating diabetic cardiac dysfunction (33). Excess ROS pro-
duction in STZ-induced diabetic cardiomyopathy has been

linked to decreased expression of miRNA-499, miRNA-1,
miRNA-133a, and miRNA-133b, as treatment with the an-
tioxidant N-acetylcysteine restored the levels of these
miRNA species to normal (162). The authors further dem-
onstrated that Junctin, a key component of cardiomyocyte
Ca2� handling, is a direct target of miRNA-1 and is conse-
quently upregulated in the diabetic heart, which has previously
been shown to impair cardiac relaxation and induce cardiac
hypertrophy and arrhythmia (162). The mechanisms by which
miRNAs regulate ROS production and by which oxidative
stress influences differential expression of miRNAs to regulate
a variety of pathophysiological pathways in the diabetic heart
remains a relatively unexplored area of research.

miRNA REGULATION OF APOPTOSIS IN THE DIABETIC
HEART

The diabetic heart, in the setting of diabetic cardiomyopathy
and diabetic heart failure, experiences an increased rate of
cardiomyocyte apoptosis. This increase in apoptosis is deter-
mined by a variety of factors, including lipotoxicity, glucotox-
icity, and increased oxidative stress. miRNA-34b is upregu-
lated in diabetic heart failure, and it has been shown to promote
apoptosis by acting as an important downstream effector of p53
(16, 56, 66). miRNA-30c and miRNA-181a have been shown
to be downregulated in diabetic patients, a diabetic cardiomy-
opathy rat model, and high-glucose-treated cardiomyocytes
(108). p53 is a validated target of miRNA-30c and miRNA-
181a, and decreased levels of these miRNA species have been
correlated with increased p53 pathway activation of hypertro-
phy and apoptosis (108). Upregulation of miRNA-30d in high
glucose-treated cardiomyocytes and diabetic rats has also been
shown to play an important role in cardiac mitochondria-
implicated pyroptosis, where it has been verified to directly
target and inhibit forkhead box O3 (FOXO3a), with down-
stream effects including decreased expression of apoptosis
repressor with caspase recruitment domain (ARC) and upregu-
lation of caspase-1 (85, 163). Zhao et al. (170) showed that
high glucose-treated rat cardiomyocyte H9C2 cells have en-
hanced expression of miRNA-34a, decreased expression of the
miRNA-34a target antiapoptotic protein Bcl-2, and increased
apoptosis. Bcl-2 has been found to be targeted and downregu-
lated by overexpression of miRNA-195 in a mouse model of
STZ-induced type 1 diabetes, and inhibition of miRNA-195
reduced ROS production and inhibited apoptosis (172). Fur-
thermore, Yu et al. (164) showed that rat cardiomyocyte H9C2
cells treated with high glucose had increased miRNA-1 expres-
sion, downregulation of the miRNA-1 target IGF-1, increased
cytochrome c release, and increased apoptosis. To add validity to
the importance of miRNA-1 in high glucose-mediated cardiomy-
ocyte apoptosis, it has been found that high glucose in vitro and in
vivo increases miRNA-1/miRNA-206 expression precipitating
posttranslational modification of heat shock protein 60, a protein
involved in protection against diabetic myocardial injury (119).
Furthermore, Katare et al. (76) found upregulation of miRNA-1,
downregulation of the miRNA-1 targets protooncogene serine/
threonine-protein kinase (Pim-1) and Bcl-2 (antiapoptotic pro-
teins), and increased proapoptotic caspase-3 activity in the hearts
of STZ-induced type 1 diabetic mice.

miRNA impact on energy substrate metabolism, ROS inter-
actions within the cell, and apoptotic pathways all show the
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significance of the interaction between miRNAs, mitochondria,
and the diabetic heart (Fig. 2). With the significant impact to
cellular and physiological health from miRNAs in the diabetic
heart, a more fundamental question arises to address the
driving mechanisms behind changing miRNA expression.

miRNA IMPORT INTO THE MITOCHONDRION

What still remains a highly relevant, and hotly debated, topic
is the process involved in miRNA import into the mitochon-
drion. Although it has been hypothesized that some miRNAs
could be transcribed through the mitochondrial genome (130),
miRNA import is predominantly favored as the mechanism for
miRNA accumulation in the mitochondrion. Research has
demonstrated the presence of miRNA within the mitochon-
drion (9, 37, 78, 124, 169) and even how fluctuating concen-
trations within the organelle contributes toward the develop-

ment of pathologies (35, 36, 45, 122, 129). Two currently
proposed mechanisms of miRNA import into the mitochondria
include the direct movement across the mitochondrial mem-
brane through a chaperone, Argonaut 2 (AGO2) (36, 169), and
diffusion through small RNA import machinery, polynucle-
otide phosphorylase (PNPase) (122).

Both Das et al. (36) and Zhang et al. (169) have shown that
AGO2 is present in the mitochondria and that cross-linking
immunoprecipitation revealed associations with miRNAs. Al-
though it has been suggested that AGO2 could have a localization
sequence on its NH2 terminus for mitochondrial targeting (10), no
definitive research has validated the precise mechanisms involved
in AGO2/miRNA mitochondrial import. A new mechanism pro-
posed for mitochondrial miRNA import includes the mitochon-
drial inner membrane protein PNPase and potential associations
with AGO2. Wang et al. (150, 151) demonstrated the importance
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of PNPase in facilitating the import of RNase P, 5S rRNA, and
mitochondrial RNA processing (MRP) RNAs, suggested through
stem-loop recognition. Recently, our group has shown that the
regulation of PNPase can alter miRNA-378 levels within the
mitochondrion (122), indicating that the function of PNPase may
extend to other small RNA species. The expression of PNPase is
also decreased during diabetes mellitus. Although this novel
mechanism of miRNA import has not been fully characterized
mechanistically, it provides a basis for future research.

REGULATION OF miRNAS AFFECTING THE DIABETIC AND
NONDIABETIC CARDIOVASCULAR SYSTEM

As described above, many cardiovascular diseases, includ-
ing diabetic cardiomyopathy and diabetic heart failure, have
unique miRNA expression signatures. These regulatory mole-
cules have an impact in modulating cellular pathways in health
and disease. Although miRNAs are highly active in posttran-
scriptional repression and degradation with complex down-
stream effects, the miRNA expression landscape is just as
complexly regulated by environmental stimuli, including
mechanisms of epigenetic modulation, exosomal transport be-
tween cells and tissues, processing of pri-miRNA and pre-
miRNA pathways, long noncoding RNA (lncRNA) “spong-
ing,” and many others (Table 2).

REGULATION OF miRNAS ALTERING THE EPIGENOME OF
THE CARDIOVASCULAR SYSTEM

What are epigenetics? The most described forms of epige-
netic regulation consist primarily of two transient alterations:
DNA methylation and histone modification (21). DNA meth-
ylation proceeds through the addition of a 5=-methyl group,
which occurs on cytosine nucleotides, where it is added by
DNA methyltransferases [DNMTs (DNMT1, DNMT3a, and
DNMT3b)] (17). Most often, this methyl group addition will
occur at CpG islands (paired cytosine and guanine nucleotides
within a DNA sequence). The addition of methyl groups to a
gene sequence attenuates transcription by decreasing the pro-
pensity of transcription factors and other transcription initiation
proteins to bind to the sequence (74).

Histone modifications, such as acetylation, methylation, and
phosphorylation, change the confirmation of chromatin by either
relaxing or condensing the DNA/protein structure (14). The pro-
cesses involved in histone modifications include histone methyl-
transferases (HMTs), which generally condense chromatin, and
histone acetyl transferases (HATs), which primarily relax chro-
matin (174). The interplay of DNA methylation and histone
modifications can significantly alter gene expression, specifically
in diseases such as type 2 diabetes mellitus, such that the epig-
enome can be completely reshaped (147).

Role of epigenetics in altering miRNA expression. Of the
variety of mechanisms known to regulate miRNA expression,
the beginning of the regulatory chain, starts at transcription.
miRNAs can either be intergenic, found within the introns of
genes, or intragenic, found within the coding region of a gene,
and can assume multidirectional or overlapping features with
the gene (32, 94). At each gene locus containing a miRNA, the
expression of the miRNA can be governed both by the DNA
methylation of a promoter/intergenic/intragenic region or through
histone confirmations around the reading frame (115). Research-
ers have begun to investigate how miRNAs can be controlled

epigenetically in a variety of pathological conditions. Conversely,
miRNAs can be implemented as a direct mechanism for altering
cellular epigenetics. The epigenetic machinery of the cell contains
multiple forms of epigenetic regulation: polycomb repressor com-
plex 1 (PRC1), PRC2, histone deacetylases (HDACs), HATs,
HMTs, and DNMTs (70, 115).

miRNAs have been found to directly affect major constitu-
ents of the epigenetic machinery, and many miRNAs have
been identified with changed expression levels through epige-
netic regulation. Ingenuity Pathway Analysis can be imple-
mented as a protein/miRNA ontology system through the use
of known molecular association data combined with predictive
software analyzing sequence homology. Figure 3 shows how
mature miRNAs are known to interact with the DNMT ma-
chinery and also reveals miRNAs associated with the mito-
chondrion of the diabetic heart that theoretically could interact
with DNMTs through their seed sequence regions.

In human femoral artery atherosclerotic plaques, Aavik et
al. (1) measured global DNA methylation levels and found
hypomethylation of the genome and that two-thirds of the
genes exhibited a significant, differential methylation pattern
compared with normal mammary artery. One of the major
findings was the 14q32 locus being significantly hypomethy-
lated, which contains miRNA-127, miRNA-136, miRNA-410,
miRNA-431, miRNA-432, and miRNA-433 (1). The authors
suggest that this epigenetic paradigm in atherosclerotic plaques
is a potential mechanism for initiating the progression of the
lesions. In the heart, during overload-induced fibrosis through
transverse aortic constriction, class I and IIb HDACs were
shown to negatively impact the heart through the regulation of
miRNA-133a (109). HDACs are known to increase in a pres-
sure overload-induced model, and by introducing HDAC in-
hibitors to overload-induced mice, miRNA-133a expression
was restored and functional deficits were ameliorated.

Arrhythmogenic cardiomyopathy has been linked to muta-
tions in specific genes, including plakophilin 2 (PKP2) (7,
144). A PKP2 knockdown model in HL-1 cardiomyocyte cells
was used to evaluate miRNA expression, revealing 59 differ-
entially regulated miRNAs (60). Of these differentially regu-
lated miRNAs, miRNA-184 showed the most significant
downregulation. The authors suggested that miRNA-184 ex-
pression is controlled through DNA hypermethylation of its
gene loci through DNMT1. A newly proposed mechanism of
miRNA/epigenetic interaction suggests that pri-miRNAs can
be used as tethers to recruit histone modification proteins to
specific DNA sites (95). Enhancer of zester homolog-2 (EZH2)
was shown to bind to the bidirectional promoter at the myosin
heavy chain (MHC) genes in the heart and promote a switch
from �-MHC to antisense �-MHC. Through RNA-chromatin
immunoprecipitation experiments, the authors demonstrated
the capacity for pri-miR-208b to tether specific genomic sites
and recruit chromatin modification machinery.

Impact of epigenetics and miRNA during diabetes mellitus.
With the progression toward type 2 diabetes mellitus (i.e.,
insulin resistance, increased adiposity, increased body mass
index), changes in the epigenome can be observed. A patient
cohort (n � 10,261) revealed that genome-wide changes in
DNA methylation in blood were linked to an increased body
mass index (147). The resulting differential methylation was
found to encompass genes involved in lipid metabolism, in-
flammatory signaling, and substrate transport. The group also

H298 REGULATING THE REGULATORS

AJP-Heart Circ Physiol • doi:10.1152/ajpheart.00520.2017 • www.ajpheart.org
Downloaded from www.physiology.org/journal/ajpheart at West Virginia Univ (157.182.105.001) on March 5, 2019.



Table 2. Regulation of miRNA in the heart and circulatory system

miRNA Type of Regulation Pathway
Expression in the Heart or

Circulatory System Disease Model Source

miRNA-133a Epigenetic Class I and IIb histone
deacetylases
decrease the
expression of
miRNA-133a

Downregulated Mouse heart: transverse aortic
constriction model

101

miRNA-184 Epigenetic DNA
hypermethylation
through DNMT1

Downregulated HL-1 cardiomyocytes: arrhythmogenic
cardiomyopathy model

54

pri-miR-208b Epigenetic Pri-miRNA tether to
enhancer of zeste
homolog 2

Upregulated Mouse heart: transverse aortic
constriction model

88

*miRNA-375 Epigenetic CpG island
methylation

Upregulated Human plasma 21, 120

*miRNA-145 Epigenetic Promoter
hypomethylation

Upregulated Human saphenous vein smooth
muscle

102

*miRNA-125b Epigenetic Suppressor of
variegation 3-9
homolog 1 3=-
untranslated region
binding, decreasing
histone 3 lysine 9
trimethylation
expression

Upregulated Mouse microvascular smooth muscle
cells (db/db model)

133

*miRNA-101 Epigenetic Binding to enhancer of
zeste homolog 2,
decreasing histone 3
lysine 27
trimethylation
expression

Upregulated Human fetal embryonic stem cells of
the umbilical cord vein

45

*miRNA-133a Epigenetic Binding to DNMT1,
DNMT3A, and
DNMT3B

Downregulated Ins2�/� Akita diabetic mice and HL-1
cardiomyocytes

24

miRNA-1 and
miRNA-133a

Exosomal transport Potential biomarker
for cardiomyocyte
death, released from
the injured
myocardium

Upregulated release into
serum

Human serum from acute myocardial
infarction patients

73

miRNA-142–3p Exosomal transport Endothelial barrier
integrity breakdown
through RAB11
family interacting
protein 2 interaction

Upregulated release into
serum

Human serum from heart transplant
surgery patients

119

miRNA-21 Exosomal transport Binds programmed
cell death 4,
offering
cardioprotection

Upregulated release into
media

Mouse cardiac progenitor cells under
oxidative stress

142

miRNA-30a Exosomal transport Hypoxia-inducible
factor-1�
upregulates miRNA-
30a, potentially
offering
cardioprotection
from autophagy

Upregulated release into
serum

Human serum from acute myocardial
infarction patients

144

miRNA-143 Exosomal transport Upregulation of
miRNA-143-3p
compared with
miRNA-143-5p

Upregulated release into
media

Human pulmonary artery smooth
muscle cells from pulmonary
arterial hypertension patients

37

miRNA-194 Exosomal transport Contribution to the
p53 response and
potential biomarker
for ischemic heart
failure

Upregulated release into
serum

Human serum from acute myocardial
infarction patients

89

*miRNA-1 and
miRNA-133a

Exosomal transport Levels positively
correlated with
predicting
myocardial steatosis
in type 2 diabetic
patients

Upregulated release into
media

HL-1 cardiomyocyte: lipid-loaded
preconditioning

35

Continued
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Table 2.—Continued

miRNA Type of Regulation Pathway
Expression in the Heart or

Circulatory System Disease Model Source

*miRNA-7 Exosomal transport Changes in serum
levels were not
significantly
contributed by
exosomes

Upregulated in serum,
not changing in
exosomes

Human serum from patients with
microvascular complications

135

*miRNA-455, miRNA-29b,
miRNA-323-5p and
miRNA466

Exosomal transport Downregulation of
matrix
metalloproteinase-9

Upregulated release into
serum

Mouse: db/db model with exercise 22

*miRNA-320 Exosomal transport Targets insulin-like
growth factor-1,
heat shock protein
20, and Ets2,
producing an
antiangiogenic
effect in cardiac
endothelial cells

Upregulated release
from cardiomyocytes

Rat cardiac endothelial cell and
cardiomyocyte coculture: Goto-
Kakizaki model

140

miRNA-21 miRNA processing DICER1 and
phosphorylated
SMAD-2
interactions increase
mature miRNA-21
expression

Upregulated Mouse: transverse aortic constriction
model

48

miRNA-103 miRNA processing Downregulation of
Dicer leads to
decreased NF-�B
activation through
decreased miRNA-
103/Krüppel-like
factor 4 binding

Downregulated Mouse: high-fat diet apolipoprotein E
knockout model

58

miRNA-1 miRNA processing GTPase-activating
protein (SH3
domain)-binding
protein 1 binds the
stem loop of
miRNA-1,
decreasing its
expression

Downregulated Rat cardiomyocyte: transverse aortic
constriction model

61

*let-7a, miRNA-130,
miRNA-142–3p,
miRNA-148, miRNA-
338, miRNA-345–3p,
miRNA-384–3p,
miRNA-433, miRNA-
450, miRNA-451,
miRNA-455, miRNA-
494, miRNA-499,
miRNA-500, miRNA-
542–3p, miRNA-744,
and miRNA-872

miRNA processing Dicer was shown to be
downregulated,
although some
miRNAs showed
increased expression

Upregulated Ins2�/� Akita diabetic mice 23

miRNA-188-3p lncRNA sponging Increased expression
of autophagy-
promoting factor
lncRNA decreases
miRNA-188-3p
levels while
increasing
autophagy-related
protein 7

Downregulated Mouse cardiomyocytes:
anoxia/reoxygenation model

137

miRNA-539 lncRNA sponging Increased expression
of cardiac
apoptosis-related
lncRNA decreases
miRNA-539 levels
while increasing
prohibitin 22

Downregulated Mouse cardiomyocytes:
anoxia/reoxygenation model

139

Continued
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found that changes in genome-wide DNA methylation can be
used as a predictive measure for the development of type 2
diabetes mellitus. Methylation of genes involved in the pro-
gression of type 2 diabetes mellitus also varies between eth-
nicities (52, 79, 99), with Indian Asians showing increased
levels of DNA methylation at ATP-binding cassette subfamily
G member 1, phosphoethanolamine/phosphocholine phospha-
tase, suppressor of cytokine signaling 3, sterol regulatory
element binding transcription factor 1, and thioredoxin-inter-
acting protein. The increased methylation of these genetic loci
in the Indian Asian population correlates to the increased risk
of developing type 2 diabetes mellitus (22).

Pheiffer et al. (103) found that miRNA expression in type
2 diabetes mellitus can be controlled through DNA methyl-
ation. Specifically, this group established the importance of
intergenic regions in controlling miRNA expression and
showed that most differentially regulated peaks between
diabetic and nondiabetic groups were found in the intergenic
regions, as opposed to the promoter or intragenic regions.
These findings raise a number of new questions concerning
miRNAs and epigenetics, such as how does epigenetic
regulation occur in a specific pathology, such as diabetes
mellitus, or tissue, such as the heart, and how can therapeu-
tics take advantage of these processes? In plasma from type

2 diabetic patients, miRNA-375 was increased (133). Fur-
thermore, miRNA-375 has 17 different CpG islands within
or surrounding the DNA loci, in which some of these
regions were differentially regulated between diabetic and
control populations. Other studies focusing on two different
populations in Chinese, Han, and Kazak people revealed
differences in the methylation pattern of miRNA-375 (24).
The authors postulated that this may be a potential mecha-
nism for the increased prevalence of type 2 diabetes mellitus
in the Han population.

The role that miRNAs and epigenetics play in defining
pathological states, such as diabetes mellitus, and how this
interaction occurs in a variety of tissue types has been well
studied. What remains to be fully understood is the impact of
the epigenetic/miRNA interplay within the diabetic heart and
cardiovascular system. In the saphenous vein of human dia-
betic and nondiabetic patients, smooth muscle cells were cul-
tured, and miRNA-145 promoter methylation was measured
(110). Expression of miRNA-145 was increased in the diabetic
phenotype, but highly variable CpG island methylation between
groups did not allow for any overall significant changes between
groups. However, specific CpG loci were shown to exhibit hy-
pomethylation, irrespective of group. Microvascular smooth mus-
cle cells (MVSMCs) from db/db and control mice were used to

Table 2.—Continued

miRNA Type of Regulation Pathway
Expression in the Heart or

Circulatory System Disease Model Source

miRNA-489 lncRNA sponging Increased expression
of cardiac
hypertrophy-related
factor lncRNA
decreases miRNA-
489 levels while
increasing myeloid
differentiation
primary response
gene 88

Downregulated Mouse: ANG II treatment 138

Each miRNA that is regulated or involved in mechanisms altering miRNA expression is listed for the heart and/or circulatory system. The type of regulation,
the specific pathway involved, and the expression change of the miRNA are included. *Use of a diabetic model for the relevant miRNA. DMNT, DNA
methyltransferase; lncRNA, long noncoding RNA.

mir-29

mir-122

mir-148
miR-199a-3p

(and other miRNAs with seed CAGUAGU)

miR-29a-5p
(miRNAs with

seed CUGAUUU)

miR-30a-5p
(and other miRNAs with seed GUAAACA)

miR-181a-1-3p
(and other miRNAs with seed CCAUCGA)

miR-21-3p
(and other miRNAs

with seed AACACCA)

E, miT (2)

E, miT (1)

E, miT (1)

E (2)

E (3)

E (1)

E (1)

PR (1)

PR (1)

PR (1)

mir-361

mir-199

mir-133

DNMT3A

DNMT1 DNMT3B

Fig. 3. Predicted interactions of miRNA with DNA methyltransferase (DNMT)1. Ingenuity Pathway Analysis provides potential areas for future epigenetic/
miRNA analyses. The predicted connections include mature miRNAs and miRNA seed sequences, which have been suggested to interact with DNMT1,
DNMT3a, or DNMT3b. miRNAs with listed seed sequences can account for one or many miRNAs that contain similar regions suggested to promote
protein/miRNA or mRNA/miRNA interactions with DNMTs.
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assess the effects of miRNA-125b, which is overexpressed in the
diabetic phenotype (146). miRNA-125b was validated to bind to
the suppressor of variegation 3-9 homolog 1 3=-untranslated
region controlling the expression of histone 3 lysine 9 trimethy-
lation (H3K9me3). Increased miRNA-125b expression resulted in
less restrictive H3K9me3 marks, ultimately increasing the expres-
sion of inflammatory genes.

Gestational diabetes mellitus can affect the health and future
function of the growing progeny. In human fetal embryonic
stem cells of the umbilical cord vein (HUVECs), EZH2 was
decreased in mothers with gestational diabetes mellitus,
whereas miRNA-101 was increased (51). EZH2 is responsible
for the trimethylation of histone 3 lysine 27 (H3K27me3).
EZH2 is also directly targeted by miRNA-101, resulting in
decreased H3K27me3 in HUVECs from gestational diabetic
mothers and subsequent altered gene transcriptional patterns.
Through the use of Ins2�/� Akita diabetic mice and HL-1
cardiomyocytes, Chavali et al. (27) defined the role of miRNA-
133a in regulating DNMTs. The group found that DNMT1,
DNMT3a, and DNMT3b were inversely correlated to miRNA-
133a (i.e., silencing of miRNA-133a induced overexpression
of the DNMTs, whereas expression of miRNA-133a inhibited
DNMT expression). In the Akita model, miRNA-133a is de-
creased, with DNMT1 and DNMT3b being induced. Through
involvement in both the processes of DNA methylation and
histone modifications, the unique miRNA/epigenetic signature
involved in the progression of a pathology, such as diabetes
mellitus, could be an invaluable predictor of cardiac function
and cardiovascular health.

EXOSOMAL RELEASE, TRANSPORT, AND UPTAKE OF miRNA
IN THE CARDIOVASCULAR SYSTEM

Exosomes and exosomal cargo. Exosomes are cell-derived
vesicular carriers used for cell signaling and communication
and have been implicated in numerous disease states, including
diabetic cardiomyopathy (112) and various cancers (8). Gen-
erally, exosomes range in size from 50 to 100 nm (107, 127,
137), but small discrepancies in size are common in the
literature. The central role of exosomes is the delivery of
various cargo types, including lipids, nucleic acids, proteins,
RNAs, and miRNAs to different cells (18, 137, 140, 142).
Exosomes transport cargo, transmitting a unique biochemical
signal from the host cell to a specific target cell or tissue or,
more systemically, by the bloodstream. Exosomal cargo is of
importance due to the specificity of the cargo loaded into each
vesicle by the host cell. This cargo is then delivered to targeted
acceptor cells, and the exosomes release their protein and lipid
cargo to activate downstream signaling events or simply de-
liver genetic material, including DNA and various RNAs
(128). Secretion of exosomes occurs via multiple mechanisms,
such as release upon exocytic fusion of multivesicular bodies
with the plasma membrane and miRNA release through a
ceramide-dependent mechanism (140). The different pathways
available for exosome secretion depend on the cell types (137)
and, currently, a lack of classification of the mechanisms of
exosome biogenesis exists.

Exosomal transport of miRNA. The transport of miRNAs via
exosomes can directly impact cellular dynamics. Exosomal
transport in the immune system through macrophages has also
proven to be an important mechanism for changing cellular

dynamics (2, 38, 71, 136), specifically through the regulation
of inflammation during cardiac injury (149). This section will
focus explicitly on the regulation of exosomal transport of
miRNA within the heart and circulatory system.

miRNA-1 and miRNA-133a are increased in the serum of
patients who have suffered from an acute myocardial infarction
(80). In a mouse model of myocardial infarction, the infarcted
and peri-infarcted tissue displays a significant reduction of
miRNA-1 and miRNA-133a. Through measuring the exosomal
release of miRNA-133a in dead, H9c2 cardiomyoblasts, the
authors suggested that the injured myocardium releases
miRNA-133a and that this marker may be used in the serum to
account for cardiomyocyte death. Sukma Dewi et al. (132)
measured the miRNAs of exosomes taken from the serum of
patients who underwent heart transplant surgery, both with and
without experiencing acute cardiac allograft rejection. These
authors found miRNA-142-3p to be significantly increased in
the exosomes. When the exosomes from the serum were used
to treat endothelial cells, miRNA-142-3p also increased in the
endothelial cells. After acute cardiac allograft rejection, the
authors concluded that exosomes in the serum can affect
endothelial barrier integrity through the interaction of miRNA-
142-3p with RAB11 family interacting protein 2. The capacity
for exosomes released from the heart to affect the systemic
circulation and peripheral tissues has been explored (48).
When serum was taken from patients before and after under-
going coronary artery bypass grafting, the authors found an
increase in the total plasma concentration of exosomes as well
as increased miRNA cargo. They observed that high-sensitivity
cardiac troponin I was positively correlated with the plasma
expression of total exosomes.

Cardiac progenitor cells (CPCs) were used to understand
how exosomal release from cells can contribute toward allevi-
ation of oxidative stress (157). During oxidative stress, it has
been shown that CPCs released more miRNA-21, which tar-
gets the protein programmed cell death 4, ultimately reducing
the cleaved version of caspase-3. These authors suggested that
CPCs may offer cardioprotection during oxidative stress
through release of exosomal miRNA-21 to surrounding tissue.
After acute myocardial infarction, exosomes isolated from the
serum of patients contained increased levels of miRNA-30a
(159). miRNA-30a is also released in exosomes from cardio-
myocytes after hypoxic conditioning. Hypoxia inducible fac-
tor-1� regulates the expression of miRNA-30a in exosomes
released by the cell, which directly target autophagy machin-
ery. In this way, cardiomyocytes may protect surrounding
tissue in a hypoxic environment by releasing miRNA-30a and
decreasing autophagy. During pulmonary arterial hyperten-
sion, the selective upregulation of miRNA-143-3p compared
with miRNA-143-5p was shown in pulmonary artery smooth
muscle cells (42). Pulmonary artery smooth muscle cells also
excreted more miRNA-143-3p through exosomes to influence
vascular endothelial cells. Blockade of the actions of miRNA-
143-3p resulted in decreased pulmonary hypertension in mouse
models.

After acute myocardial infarction, Matsumoto et al. (96)
examined the role of circulating miRNAs as a contributing
factor to the incidence of heart failure. Eighteen days postin-
farction, serum was collected and miRNA-192 was shown to
be significantly increased, which plays a role in the p53
response. In the p53 pathway, miRNA-194 was shown to be
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significantly elevated in exosomes, and the authors correlated
serum levels of miRNA-192, miRNA-194, and miRNA-34a in
patients who experience acute myocardial infarction with the
development of heart failure.

Exosomal transport of miRNA in diabetes mellitus. Through
the progression of diabetes mellitus, it has been well docu-
mented that the miRNA profile changes throughout the body
(11, 49, 59, 77, 118, 166). What is not entirely known is how
the miRNA profile changes within exosomes. Questions con-
cerning the transport of miRNAs in diabetes mellitus, the
protective or detrimental effects of exosomes during the pa-
thology from a temporal standpoint, and how exosomal trans-
port of miRNAs may differ mechanistically between tissues
have begun to be explored.

In uncomplicated type 2 diabetes mellitus, the role of serum
miRNAs in predicting myocardial steatosis was evaluated (40).
These authors found that miRNA-1 and miRNA-133a were
positively correlated with myocardial steatosis and that
miRNA-133a was elevated in Type 2 diabetic patients. Using
HL-1 cardiomyocytes, miRNA-1 and miRNA-133a were
found to be higher in exosomes released from lipid-loaded
preconditioning. Patients with type 2 diabetes mellitus may
exhibit microvascular complications (148). miRNA-7 was
shown to be overexpressed in the serum of patients with type
2 diabetes mellitus or type 2 diabetes mellitus with microvas-
cular complications compared with nondiabetic patients. These
authors found that miRNA-7 was not primarily packaged in
exosomes but free floating in the serum. The authors concluded
that miRNA-7 serum levels may have the potential to predict
microvascular complications in type 2 diabetes mellitus. Ex-
amining the generational effects of diabetes mellitus and exo-
some delivery, Shi et al. (123) found that mice made type 1
diabetic through STZ injections before mating had serum
containing increased levels of exosomes with miRNAs in-
volved in cardiac developmental regulation. They also showed
that these exosomes can be directly transferred to the fetal
pups, which may account for the observed increased in con-
genital heart defects. By injecting the exosomes of the diabetic
mothers into the control pups, they also observed an increase in
congenital heart defects in the F1 generation.

The effects of exercise on the diabetic condition and how
complications of the disease can be mitigated were explored
through matrix metalloprotease (MMP)-9 regulation (25).
MMP-9 has been shown to be significantly decreased in a
db/db model after exercise. The authors demonstrated that
exosomal transport of miRNAs decreasing the expression of
MMP-9 (i.e., miRNA-455, miRNA-29b, miRNA-323-5p, and
miRNA466) were increased after exercise. In the Goto-Kak-
izaki rat, a model of type 2 diabetes mellitus, cardiac endothe-
lial cells (MCECs) cocultured with cardiomyocytes from dia-
betic rats resulted in a decrease in proliferation and migration
compared with control Wistar rats (155). Inhibition of exosome
formation from diabetic mice restored function of MCECs,
which was correlated with a significant decrease in miRNA-
320 within MCECs. The importance of miRNA-320 is that it
binds to targets that decrease angiogenesis. The authors con-
cluded that in diabetes mellitus, cardiomyocytes may be in-
volved in producing an antiangiogenic effect on the surround-
ing environment.

miRNA PROCESSING, lncRNA, AND OTHER REGULATORS OF
miRNA IN THE CARDIOVASCULAR SYSTEM

Mechanisms of miRNA processing and post-transcriptional
control. Indirect mechanisms of miRNA regulation, such as
epigenomic changes and alterations in exosomal transport, are not
the only ways that miRNA levels can be affected in the diabetic
heart. More direct means of miRNA alteration within the cell can
include miRNA processing as well as regulation by small biomol-
ecules or other RNA species. The milieu of the pathology, such as
changes in glucose and other metabolite concentrations within the
cell, can directly alter the efficiency of miRNA processing and
modify the dynamics of cellular processes.

After transcription of miRNA, posttranscriptional regulation
through lncRNAs can occur. It has been shown that lncRNAs
have binding sites for miRNAs (73). One mechanism, referred
to as sponging, involves the expression of lncRNA to sequester
miRNAs (65). This lncRNA/miRNA is considered part of a
larger network of competing endogenous RNA (ceRNA), in
which the cell uses both coding and noncoding RNA to expand
the functional genetic information that a cell can produce
(114). At the current time, this field is underexplored, with few
lncRNAs and even fewer lncRNA/miRNA interactions char-
acterized. Ultimately, the potential for information regarding
the control, sequestering, and further posttranscriptional regu-
lation of miRNAs is immense.

miRNA REGULATION

miRNA processing. The most well-known and studied role
of Drosha and Dicer is to regulate the transcription of miRNAs
in developed organisms. Studies have shown that a complete
depletion of Dicer from an embryonic time point can signifi-
cantly alter the development of cardiac tissue (116, 125), likely
through a depletion of most, if not all, miRNAs. Additionally,
miRNA processing through Dicer has been shown to have
epigenetic control (143). During hypoxic conditions, the dem-
ethylases KDM6A/B have decreased expression, resulting in
increased H3K27me3. Other epigenetic mechanisms, such as
DNA methylation or further histone modifications, could also
likely control the expression and processing of Dicer or Drosha.

García et al. (54) demonstrated that myocardial remodeling
by miRNA-21 may be mechanistically controlled by the pres-
ence of SMAD2/3 and DICER1. In mice undergoing pressure
overload, SMAD2/3 and DICER1 expression was increased in
the left ventricle, which was also upregulated in patients with
aortic stenosis. miRNA-21 was isolated bound to DICER1,
whereas DICER1 and phosphorylated SMAD2/3 were shown
to have protein-protein interactions. The authors concluded
that this tranforming growth factor-�-dependent mechanism of
phosphorylated SMAD2/3 and DICER1 regulating the in-
creased, mature miRNA-21 processing could be important in
myocardial remodeling. In some tissues, the downregulation of
Dicer may be beneficial. It was shown that in endothelial cells
where Dicer is downregulated, it decreased lesional macro-
phage content and monocyte adhesion in a high-fat diet apo-
lipoprotein E knockout mice (64). Mechanistically, downregu-
lation of Dicer also decreases miRNAs, such as miRNA-103,
which binds Krüppel-like factor 4. Krüppel-like factor 4,
through NF-�B, leads to an exacerbated atherosclerotic pathol-
ogy, suggesting that increased Dicer expression is a maladap-
tation in endothelial cells.
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Other than the canonical Drosha and Dicer miRNA editing
pathway, other mechanisms have been proposed for editing
miRNA. GTPase-activating protein (SH3 domain) binding pro-
tein 1 (G3bp1) is upregulated in cardiac hypertrophy and binds
to the stem loop of miRNA-1 (67). miRNA-1 is known to
regulate important transcription and translational machinery in
the cell. Overexpression of G3bp1 can lead to decreased
miRNA-1 levels and, therefore, increased transcriptional and
translational capacity of the cell. Although G3bp1 does not
directly induce cardiac hypertrophy, this novel posttranscrip-
tional regulation of miRNA by an endoribonuclease may be
mimicked by other proteins as well.

miRNA posttranscriptional regulation. Gene regulation
through lncRNA is becoming recognized as a mechanism for the
control of pathological development. A lncRNA named au-
tophagy promoting factor promotes autophagy in the heart
through targeting miRNA-188-3p (152). miRNA-188-3p targets
autophagy-related protein 7, suppressing autophagy. Thus, regu-
lation of autophagy promoting factor lncRNA in the heart could
be beneficial in reducing autophagy-related heart conditions, such
as myocardial infarction and heart failure. Wang et al. (154) also
investigated the role of cardiac apoptosis-related lncRNA in reg-
ulating mitochondrial fission and apoptosis. Cardiac apoptosis-
related lncRNA targets miRNA-539, acting as a sponge, to in-
crease the expression of the miRNA-539 target prohibitin-2.
Prohibitin-2 has been suggested to play a role in suppressing
apoptosis and increasing mitochondrial fission. In mice, after
ANG II treatment, miRNA-489 expression was found to be
reduced (153). By overexpressing miRNA-489 in mouse cardio-
myocytes, the hypertrophic response was decreased and miRNA-
489 was shown to target myeloid differentiation primary response
gene 88 as the mechanism. miRNA-489 expression was further
found to be regulated by a lncRNA named cardiac hypertrophy-
related factor, which can act as an endogenous sponge and
increase the hypertrophic response.

Acute myocardial infarction was experimentally induced in
swine (75). Using global run-on sequencing, RNA was taken
from both the infarcted area and the peripheral, healthy cardiac
tissue. In the infarcted tissue, 450 lncRNAs were differentially
regulated. Some of the differentially regulated lncRNAs were
novel, conserved sequences found within myocardial transcrip-
tion factors in an antisense orientation. The sequencing exper-
iment demonstrates the breadth of lncRNAs that could poten-
tially impact miRNA and mitochondrial function. The regula-
tion of miRNAs and the dynamic of cellular homeostasis in the
heart and circulatory system surpass the scope of this review,
with research teams reporting miRNA regulation through tran-
scription factors (20, 68, 105), gene expression (29, 60), other
noncoding RNAs (55, 160), and even the microbiome (145).

miRNA processing and lncRNA regulation in the diabetic
heart. Limited research has been conducted in exploring the
diabetic heart and the mechanisms of miRNA processing and
posttranscriptional regulation. During gestational diabetes mel-
litus and pregnancy, it has been demonstrated that the content
of DGCR8, Drosha, and Dicer were increased compared with
nonpregnant controls (106). Furthermore, DGCR8, Drosha,
and Dicer were more highly expressed in gestational diabetes
mellitus than in those with normal pregnancies, suggesting a role
for increased miRNA processing in diabetes mellitus. An increase
in Dicer expression is also observed in mutant Ins2�/� Akita mice
(26). In Akita hearts, even though Dicer expression is increased,

let-7a, miRNA-130, miRNA-142-3p, miRNA-148, miRNA-338,
miRNA-345-3p, miRNA-384-3p, miRNA-433, miRNA-450,
miRNA-451, miRNA-455, miRNA-494, miRNA-499, miRNA-
500, miRNA-542-3p, miRNA-744, and miRNA-872 expression
is decreased.

lncRNAs have been connected to the diabetic heart, being
independent predictors of grade I diastolic dysfunction and the
left ventricular mass-to-left ventricular end-diastolic volume
ratio in human blood (39). Also, blockade of the function of
lncRNA NONRATT021972 could serve as a therapeutic for
diabetic cardiac autonomic neuropathy, decreasing TNF-� and
increasing IRS1 expression (158). Although no studies at the
current time have implicated lncRNAs in controlling miRNA
expression in the diabetic heart, the impact of lncRNAs on the
pathogenesis of the diabetic heart is noted, and miRNA targets
are likely present.

THERAPEUTIC APPLICATIONS OF miRNA IN
DIABETES MELLITUS

Because of the significant cardiovascular complications that
arise from diabetes mellitus, investigating the therapeutic appli-
cations that are available, or could be feasible options in the
future, is important. The purpose of this section is to evaluate both
current and potential future therapeutic applications in the diabetic
heart. We will evaluate how direct targeting of miRNAs, exo-
somal transport of miRNAs, epigenetic manipulation of/by
miRNAs, and other therapeutics involving miRNAs could impact
patient health.

Targeting dysregulated energy substrate metabolism in the
viable, but diseased, myocardium has been extensively inves-
tigated as a potential therapy for heart disease patients. Dia-
betic cardiomyopathy and diabetic heart failure are character-
ized by decreased glycolysis, decreased glucose oxidation, and
increased fatty acid metabolism. Previous strategies to address
these metabolic alterations have been to pharmacologically
improve myocardial glucose import, increase pyruvate dehy-
drogenase activity to allow for greater glucose oxidation, and
decrease fatty acid oxidation (135). These drugs include glu-
cose transport activators (glucagon-like peptide-1 mimetics/
agonists), pyruvate dehydrogenase activators (dichloroacetate
and L-carnitine), carnitine palmitoyltransferase I inhibitors
(perhexiline and etomoxir), and fatty acid oxidation inhibitors
(ranolazine and trimetazine) (62, 90, 91, 93). Because of extensive
regulation of fatty acid metabolism by the PPAR family of
transcription factors, PPAR agonists are being considered for
improving mitochondrial function in diabetic cardiomyopathy
(82). Interestingly, metoprolol, a �-blocker, has been shown to
inhibit fatty acid oxidation and improve cardiac function in STZ-
induced diabetic rats (120). Recent studies of antianginal drugs
have shown effects in improving myocardial O2 utilization and
efficiency of energy substrate metabolism (31).

miRNA-directed therapies. As differential miRNA expres-
sion in cardiovascular disease has been proven to modulate the
expression of components of energy substrate metabolism, one
may ask whether normalizing the expression of miRNAs that
target the most important metabolic players through the ad-
ministration of antimiRs/antagomiRs or miRNA mimics would
recalibrate energy substrate metabolism back to healthy flux.
This strategy of pharmacologically regulating the regulators
(miRNAs) has been successfully deployed preclinically to
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improve pathological cardiac abnormalities found in diabetic
cardiomyopathy or diabetic heart failure. As an example, Thum
et al. (138) showed that administering an antagomiR specific
for miRNA-21 reduced cardiac fibrosis in a mouse pressure
overload-induced model. Others have reported that antagomiR-
mediated inhibition of miRNA-199b inhibited and reversed
cardiac hypertrophy and fibrosis in mouse models of heart
failure (34). Therapeutic inhibition of miRNA-208a via anti-
miR action has shown much promise in preventing patholog-
ical cardiac remodeling in hypertension-induced heart failure
in Dahl hypertensive rats and in improving systemic insulin
sensitivity and glucose tolerance in a mouse model of high-fat
diet-induced obesity (58, 98). To our knowledge, there have
been no preclinical miRNA-based studies to investigate the
potential of normalizing the differential expression of miRNAs
targeting components of energy substrate metabolism in the
diseased diabetic heart. Because metabolic dysregulation is
foundational to the etiology of diabetic heart disease and
miRNA-based therapeutics may offer precise regulatory poten-
tial, we believe the field of miRNA-based therapies targeting
energy substrate metabolism in diabetic cardiomyopathy and
diabetic heart failure has a very bright future.

Epigenetics in miRNA regulation during therapeutic
intervention. In ob/ob mice, unacylated ghrelin was used as a
therapeutic to increase resistance against oxidative stress (139).
Unacylated ghrelin increased the expression of miRNA-126,
leading to indirect increases in SIRT1 and decreased histone 3
lysate 56 deacetylation. The results of the study showed that
unacylated ghrelin can reduce cell senescence by protecting
endothelial cells from ROS damage. Curcumin (diferuloyl-
methane) has been implicated as a potential drug for modifying
both epigenetic and miRNA expression. Curcumin supplemen-
tation has been suggested to inhibit DNA methylation through
inhibition of the catalytic thiolate of DNMT1 (89). Restriction
of DNA methylation may be a contributing factor toward
modified miRNA expression after curcumin supplementation
(134, 167). EGCG, which is an ester of epigallocatechin and
gallic acid, has shown very similar results as curcumin. EGCG
is a direct inhibitor of DNMT1 and also has been shown to alter
as many as 61 miRNAs and their expression (50, 83, 141).

Exosomes in miRNA regulation during therapeutic intervention.
Exosome-based therapeutics currently revolve around the idea
of collecting exosomes from healthy cell populations to di-
rectly transfer to those in a pathological setting. Gallet et al.
(53) showed that in pigs, cardiosphere-derived cell (CDC)
exosomes, which were delivered through open-chest intramyo-
cardial injection, improved the condition of acute and conva-
lescent myocardial infarction subjects. Alleviation of condi-
tions included decreased scarring and improved left ventricular
ejection fraction. The content of CDCs has also been profiled,
revealing that, aside from traditional miRNAs, exosomes de-
rived from CDCs also contain noncoding RNA species, such as
Y RNA, which are understudied (19). Future applications for
the heart could even include the use of other modified exo-
somes. One such study examined the transport of a cargo
protein through injected macrophage exosomes across the
blood-brain barrier (165). With the capacity to alter exosomal
cargo, such as introducing specific miRNA or miRNA sponges,
the potential therapeutic applications in the heart are numerous.

miRNA PROCESSING AND OTHER MECHANISMS OF
REGULATION DURING THERAPEUTIC INTERVENTION

In both diabetic human patients and mice, DICER1 protein
levels were found to be increased in peripheral blood mono-
nuclear cells after treatment with metformin (100). Metformin
was shown to posttranscriptionally regulate the expression of
RNA-binding protein AU-binding factor 1, disrupting binding
with DICER1 mRNA and leading to an increased expression of
DICER1 protein. Metformin also resulted in an increase in
miRNA-20a, miRNA-34a, miRNA-130a, miRNA-106b,
miRNA-125, and let-7c as well as a decrease in genes associ-
ated with senescence. Elgheznawy et al. (47) demonstrated that
platelets from diabetic human patients and mice had a lower
expression of miRNA-142, miRNA-143, miRNA-155, and
miRNA-223. In diabetic platelets, DICER1 expression was
decreased, which the authors hypothesized was due to calpain
cleavage of the enzyme. When diabetic mice were treated with
a calpain inhibitor, miRNA-223 expression was restored.

Although lncRNAs have not yet been implemented in dia-
betic cardiovascular studies, their application could be effec-
tive. For cancer therapy, an interfering lncRNA was designed
to contain specific complementary miRNA sequences, which
impacted the disease progression (87). The results included
decreased abilities for proliferation, migration, and invasion of
hepatocellular carcinoma cells.

CONCLUSIONS

miRNAs are key players in the regulation, maintenance, and
function of the cardiovascular system. The impact of miRNA on
mitochondrial function in the diabetic heart is evidence that
managing the expression of these small endogenous RNAs is
important and that the onset of pathologies may largely be con-
trolled, and sustained, by miRNA. This review has examined how
the miRNA profile is altered in the diabetic heart and how the
changes in miRNA expression specifically target mitochondrial
function, through energy substrate utilization, apoptosis, and ROS
production. Furthermore, we examined how miRNA may be
controlled in the cardiovascular system and diabetes mellitus
through epigenetics, exosomes, processing, and posttranscrip-
tional sequestration. While research concerning miRNA expres-
sion is maturing, studies focusing on the regulation of the regu-
lating miRNAs are in its infancy. Much information can be gained
mechanistically of disease and pathologies, specifically in the
heart and diabetes mellitus, through additional research in this
area. Therapeutically, regulating the regulators provides a method
with the potential for improved treatment strategies and health
effects with greater longevity.
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