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Abstract

Background Patient-centred care requires evidence of

treatment effects across many outcomes. Outcomes can be

beneficial (e.g. increased survival or cure rates) or detri-

mental (e.g. adverse events, pain associated with treatment,

treatment costs, time required for treatment). Treatment

effects may also be heterogeneous across outcomes and

across patients. Randomized controlled trials are usually

insufficient to supply evidence across outcomes. Observa-

tional data analysis is an alternative, with the caveat that

the treatments observed are choices. Real-world treatment

choice often involves complex assessment of expected

effects across the array of outcomes. Failure to account for

this complexity when interpreting treatment effect esti-

mates could lead to clinical and policy mistakes.

Objective Our objective was to assess the properties of

treatment effect estimates based on choice when treatments

have heterogeneous effects on both beneficial and detri-

mental outcomes across patients.

Methods Simulation methods were used to highlight the

sensitivity of treatment effect estimates to the distributions

of treatment effects across patients across outcomes. Sce-

narios with alternative correlations between benefit and

detriment treatment effects across patients were used.

Regression and instrumental variable estimators were

applied to the simulated data for both outcomes.

Results True treatment effect parameters are sensitive to

the relationships of treatment effectiveness across out-

comes in each study population. In each simulation sce-

nario, treatment effect estimate interpretations for each

outcome are aligned with results shown previously in sin-

gle outcome models, but these estimates vary across sim-

ulated populations with the correlations of treatment effects

across patients across outcomes.

Conclusions If estimator assumptions are valid, estimates

across outcomes can be used to assess the optimality of

treatment rates in a study population. However, because

true treatment effect parameters are sensitive to correla-

tions of treatment effects across outcomes, decision makers

should be cautious about generalizing estimates to other

populations.
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Key Points for Decision Makers

In clinical scenarios in which treatment effects are

heterogeneous across patients for more than one

outcome, treatment effect estimates for each

outcome share properties previously demonstrated in

single outcome models.

Treatment effect estimates can properly vary across

study populations with differences in the correlations

in treatment effects across outcomes in each

population.

Treatment effect estimates across multiple outcomes

can be used to assess whether treatments rates are

‘right’ in the study population, but decision makers

should be very careful in generalizing treatment

effect estimates to other patient populations.

1 Background

The healthcare literature is beginning to appreciate the

importance of variation in treatment effectiveness across

patients, or ‘treatment effect heterogeneity’, when evalu-

ating the potential effects of policies designed to modify

healthcare decisions in practice [1–7]. If treatment effects

are heterogeneous across patients it may not be valid to use

the single effect estimate from a randomized controlled

trial (RCT) as the basis for these evaluations [1]. In addi-

tion, an existing methods literature focuses on treatment

effect estimate interpretation using observational databases

when the effect of treatment on a single study outcome or

the ‘outcome of interest’ is heterogeneous across patients

[8–12]. This literature describes the conditions under which

various estimators can produce estimates of treatment

effect parameters, such as the average treatment effect

across a population (ATE), the average treatment effect on

the patients in a population who were treated (ATT), the

average treatment effect on the untreated in a population

(ATU), and the local average treatment effect (LATE),

which is the average treatment effect for patients in a

population whose treatment choices are sensitive to the

value of a specific instrumental variable. This literature

stresses the importance in estimate interpretation of ‘sort-

ing on the gain’ or ‘essential heterogeneity’ in which

treatment choice reflects the expected treatment effective-

ness on the single outcome of interest for each patient

[9, 13–16]. It has been shown that regression and instru-

mental variable estimators yield estimates of distinct

treatment effect parameters [9, 13–15, 17]. As a result, with

essential heterogeneity, treatment effect estimates for the

outcome of interest can differ across estimators for the

same study population and all be correct [9, 13–15]. In

addition, it has been shown that alternative instruments in

an instrumental variable analysis with the same population

can yield different and correct estimates of LATE for the

outcome of interest [18–21].

This is not the end of the parameter variation story. With

essential heterogeneity, the true values of ATT, ATU, and

LATE in study populations reflect the distribution of other

factors affecting treatment choice within each population

[22, 23]. In consequence, treatment effect estimates for the

outcome of interest can differ across study populations and

be correct for each study population. We demonstrate this

result here using scenarios in which a treatment has

heterogeneous effects across more than one outcome

[24, 25]. Theoretical models of essential heterogeneity over

a single outcome of interest are insufficient to describe

observed behaviours such as ‘treatment-risk paradox’

[26–33]. Treatment-risk paradox is the label applied to

clinical situations in which patients thought to have the

most to gain from treatment in the outcome of interest are

observed to be the least likely treated in real-world prac-

tice. For example, research showed higher-risk coronary

patients were less likely to receive guideline-supported

care [34].

A possible explanation for treatment-risk paradox is that

patients with the most to gain from treatment in the out-

come of interest may have higher expected losses from

treatment in other outcomes. Instead of sorting on the gain

from a single outcome, observed treatment variation may

result from ‘sorting on the mix’ of expected benefits and

detriments across outcomes. The implications of treatment

effect heterogeneity across outcomes on treatment choice

and the inferences that can be made from treatment effect

estimates using observational data have not been investi-

gated. If treatment choice affects an array of outcomes

differentially across patients, the true treatment effect

parameters on the outcome of interest can vary across study

populations or within stratified subsets of the same study

population. For example, research assessing the treatment

effects of statins after acute myocardial infarction (AMI) in

the Medicare population found similar absolute survival

benefits from statins for both complex and non-complex

patients, yet treatment rates for complex statin patients

were much lower than for the non-complex patients [35].

Stratified analysis by patient complexity revealed that

complex AMI patients had liver, kidney, and muscular

adverse effect risks that were not observed in the non-

complex patients. It is possible that lower statin prescribing

rates for complex AMI patients in practice reflected con-

sideration of both the benefits and the detriments of statin
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use in complex patients. Modifying statin prescribing rates

for the complex AMI patients to match the rates in the non-

complex patients could result in intolerable increases in

side effect rates for complex patients.

Therefore, interpreting treatment effect estimates on a

single outcome of interest without considering the effects

of treatment on other outcomes can lead to improper con-

clusions and misguided clinical and policy recommenda-

tions. This study uses simulation modelling to demonstrate

this point. We assessed the sensitivity of treatment effect

estimates from regression and instrumental variable (IV)

estimators when treatment effects are heterogeneous for

both benefit and detriment outcomes, and treatment choice

reflects this heterogeneity. In each simulation scenario, the

assumptions required for the consistency of regression and

IV estimates are met so that the estimates in each scenario

are not affected by unmeasured confounding. The distri-

butions of the treatment effects across populations for the

benefit outcome was consistent across simulation scenar-

ios. The distribution of treatment effects across the detri-

ment outcome was varied across the simulated populations.

It was our objective to show in these simulations that,

even in the best of circumstances for both regression esti-

mators (no correlation between treatment and the error

term) and IV estimators (no correlation between the

instrument and the error term and an instrument with a

strong effect on treatment choice), the resulting unbiased

estimates are sensitive to the distinct circumstances related

to treatment choice within each sample population. In

empirical work with observational data, researchers still

need theory to justify these assumptions [13, 36, 37], and

IV analysis requires the existence of instruments with

strong relationships with treatment choice [38, 39].

2 Methods

2.1 Interpretive Framework

Assume the research goal is to assess the comparative

effectiveness of a treatment (T) relative to an alternative

(A) on the outcome of interest (Y#) across a population of

patients with a given health condition. However, for each

patient, the decision of T versus A affects K distinct out-

comes (Yk), which include Y# [24, 25]. The Yks can rep-

resent benefits such as increased cure or survival

probabilities or detriments such as direct treatment costs,

time costs, or adverse event risks [24]. Equations (1)–(3)

describe the true effect of T relative to A on each outcome

Yk for patient ‘i’ with a counterfactual model:

Yk1i ¼ dk0i þ dk1i ð1Þ

Yk0i ¼ dk0i for all k ¼ 1 to K: ð2Þ

Yk1i equals outcome ‘k’ for patient ‘i’ if treated with T, and

Yk0i equals the value of outcome ‘k’ for patient ‘i’ if treated

with A. The treatment effect (TE) of T relative to A on

outcome ‘k’ is specific to each patient:

TEki ¼ Yk1i�Yk0i ¼ dk1i ð3Þ

The parameters dk1i can be positive or negative across

the ‘k’ outcomes depending on how each outcome is

measured. For example, relative to A, for patient ‘i’, T may

increase cure probability, lower costs, and increase risk of

an adverse event. The treatment effect for the outcome of

interest for patient ‘i’ is designated d#1i
Research to obtain evidence about the distribution of

d#1i across patients requires a dataset in which Ti varies

across patients. In observational healthcare databases, this

variation results from different patient–provider dyads

making different treatment choices. Following suggested

approaches [11, 40], treatment choice is modelled here on

the beliefs or expectations each dyad ‘i’ has over how

treatments will affect each Yk outcome for patient ‘i’ and

the values ‘i’ places on each of the K expected outcome

changes:

eYk1i ¼ ak0i þ ak1i for k ¼ 1 to K ð4Þ
eYk0i ¼ ak0i for k ¼ 1 to K ð5Þ
eTEki ¼ eYk1i � eYk0i ¼ ak1i for k ¼ 1 to K ð6Þ

NVi ¼
X

K

k¼1

Vki � eak1ið Þ ð7Þ

Ti ¼ 1 if NBi [ 0ð Þ; 0 otherwise: ð8Þ

Equations (4) and (5) are patterned after (1) and (2),

except the ak0i and ak1i parameters reflect the effectiveness

beliefs of ‘i’ with respect to each outcome ‘k’. eYk1i and eYk0i

are the expected results of ‘i’ for outcome ‘k’ if treated

with T and A, respectively and fTEki is the expected

treatment effect. NVi is the expected net value of T relative

to A for dyad ‘i’ at treatment decision time. The parameters

Vki (k = 1–K) reflect the value ‘i’ places on each unit of

expected outcome change. The Vkis are positive for

outcome changes that benefit the patient and negative for

outcome changes detrimental to the patient. A dyad

chooses Ti if NVi[0. Variation in Ti across patients with

the same condition in an observational healthcare database

stems from differences in the belief and value parameters

in equation (7) across the patient–provider dyads.

The specification of the K outcomes important to

patients in equation (7) makes their role explicit when

interpreting and generalizing treatment effect estimates

across study populations. In prior discussions of essential
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heterogeneity, only variation in a#1i across patients pro-

vided the basis for ‘sorting on the gain’. It was acknowl-

edged that treatment choice can affect other outcomes (e.g.

costs), but it was also assumed implicitly that no rela-

tionships existed between a#1i and treatment effects on the

other outcomes [8, 10]. In real-world practice, it is possible

that correlations in treatment effects across outcomes exist

across patients and these correlations differ across study

populations. For example, in complex elderly populations,

patients with the highest expected benefit from treatment in

the outcome of interest may also have the highest expected

risk of detriment from treatment. This positive relationship

between benefit and detriment may not exist for younger

non-complex patients.

2.2 Simulation Approach

We expanded the simulation model of treatment choice and

outcome used in other research [22, 41] to include two

outcomes representing the benefit (B) and detriment (D)

associated with treatment choice. For this exercise, B and

D are modelled as discrete events. Relative to alternative

(A), for patient ‘i’ treatment (T) increases the probability of

both the benefit P(Bi) and detriment P(Di) occurring. These

probabilities are heterogeneous across patients based on a

factor (Xi) that is observed by the decision dyad but is

unobserved by the researcher. These relationships are

represented by the following equations for patient ‘i’:

P Bið Þ ¼ dB0 þ dB10 þ dB11 � Xið Þ � Ti ð9Þ
P Dið Þ ¼ dD0 þ dD10 þ dD11 � Xið Þ þ mið Þ � Ti ð10Þ

Ti = 1 if patient ‘i’ receives treatment and 0 if patient ‘i’

receives A. Xi affects the effect of Ti on both P(Bi) and

P(Di) but does not have a direct effect on either P(Bi) or

P(Di). The true treatment effects of T relative to A for

patient ‘i’ are represented by equations (11) and (12):

TEBi ¼ ðdB10 þ dB11 � XiÞ ð11Þ
TEDi ¼ dD10 þ dD11 � Xið Þ þ mið Þ ð12Þ

Because Xi is in both equations, varying the parameters

in equations (11) and (12) leads to different relationships in

treatment effects across outcomes in the simulated

populations. We label B as the outcome of interest and

fixed the parameters in equation (11) across simulations.

The parameters in equation (12) were varied across

simulations to reflect distinct treatment effect

relationships between TEBi and TEDi in each population.

A ‘noise’ term mi is specified in equation (12) to portray

real-world conditions in which the correlations in treatment

effects across outcomes are not perfect.

Xi affects net treatment value through its influence on

expected treatment effects as seen in the following

relationship:

NVi ¼ VB � aB10 þ aB11 � Xið Þ þ VD

� aD10 þ aD11 � Xið Þ þ mið Þ þ VZ � Zi þ li; ð13Þ

where NVi is the expected net value of T relative to A for

patient ‘i’; VB is the value each patient gains if the benefit

occurs, and VD is each value a patient loses if the detriment

occurs. These value parameters can be patient specific, as

in equation (7). In our simulations, we specified them as

constants across patients to focus on the implications of

correlations of treatment effects across outcomes. The

parameters in equations (11) and (12) reflect the true

treatment effect relationships conditional on Xi, whereas

the parameters in equation (13) reflect the expected treat-

ment effects conditional on Xi when the treatment decision

is made. This distinction enabled us to simulate the con-

sequences when expectations do not match the true treat-

ment effects for each patient. VB�(aB10? aB11�Xi) represents

the value decision dyad ‘i’ places on the expected change

in benefit probability associated with treatment. VD-

((aD10? aD11�Xi)? mi) represents the value decision dyad

‘i’ places on the expected change in the probability of the

detriment associated with treatment. Zi and li represent
factors affecting net treatment value that have no effect on

either P(Bi) or P(Di). Zi is measured by the researcher and

li is not. Zi will serve as our instrument and is specified as a

binary variable. VZ is specified as a negative value if Zi = 1

and a positive value if Zi = 0.

Five simulation scenarios were generated by varying the

parameters in equations (11), (12) and (13). These sce-

narios are summarized in Table 1. Simulated patients were

randomly assigned values of Xi, Zi, mi, and li using distri-

butions detailed in Table 1. NVi was then computed for

each patient. Following standard discrete choice theory

[42], simulated patients chose treatment (Ti) if NVi was

[0. Equations (11) and (12) were used to estimate the

‘true’ benefit and detriment treatment effects for each

patient, respectively, conditional on treatment choice.

Using the outcome probabilities from equations (9) and

(10), respectively, benefit/non-benefit (Bi) and detriment/

non-detriment (Di) binary outcomes were simulated for

each patient using the ‘Bernoulli’ option within the RAND

function in SAS 9.1. The Bernoulli option simulates a

binary outcome (1 if the outcome occurs, 0 otherwise)

based on the probability of an outcome occurring.

In all five scenarios, the true distribution of TEBi con-

ditional on Xi was distributed uniformly across patients

between 0 and 0.25, with an average treatment effect on the

benefit in each simulated population of 0.125. For the

benefit outcome, the expected treatment effect used in

treatment choice equalled the true treatment effect
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(dB10 = aB10 and dB11 = aB11) in all scenarios. The dD10,
dD11, aD10, aD11 parameters were modified across scenarios

to reflect different correlations between benefit and detri-

ment treatment effects and distinct relationships between

expected and true treatment effects on the detriment. In

scenario I, a negative correlation existed between TEBi and

TEDi. Patients with low values of Xi had the highest

probability of benefit from treatment and the lowest prob-

ability of detriment. RCTs often use exclusion rules to try

to isolate patients like those in scenario I. Scenario II was

also characterized by a negative correlation between TEBi

and TEDi, but relative to scenario I, patients in scenario II

had a higher probability of detriment at every Xi level.

Scenario III displays treatment–risk paradox with a posi-

tive correlation between TEBi and TEDi. Patients with low

values of Xi had the highest probability of both benefit and

detriment from treatment. In addition, in scenario III, the

probability of detriment was high enough so that for most

patients with low Xi values NVi\0. In scenario IV,

patients have the true detriment relationship in scenario II,

but the decision dyads have expectations of detriment risk

as in scenario I. Scenario IV occurs if providers accept

claims of external validity of RCT results for a new

treatment without experiencing how the treatment works in

patients unlike those in the trial. Scenario V is like scenario

IV except that the true detriment relationship matches the

treatment–risk paradox case of scenario III.

In all five scenarios, 1000 simulations were run, each

containing 5000 patients. Within each simulated population

we calculated the true ATT, ATU, and LATE for both the

benefit (Bi) and the detriment (Di). We identified the sim-

ulated patients whose treatment choices were responsive to

their instrument values in each simulation run—the mar-

ginal patients [43, 44]. These patients were used to estimate

the true LATE. Marginal patients were those with

(a) Zi = 1 who did not choose treatment but would have

chosen treatment had Zi = 0, or (b) Zi = 0 who chose

treatment but would not have chosen treatment had Zi = 1.

Using the Ti, Bi, Di, and Zi values in each simulation run,

we estimated equations (9) and (10) using regression and

IV estimators and compared the estimates to the true ATE,

ATT, ATU, and LATE values.

3 Results

Figures 1, 2, 3, 4, 5 contain scatter plots of the true TEBi

(blue) and true TEDi (red) distributions for scenarios I–V,

respectively. The horizontal axis displays the Xi value for

each simulated patient. For clarity, only the 1000 obser-

vations from the first simulation in each scenario are dis-

played. In the simulations, each patient chose treatment if

the expected benefit from treatment was greater than the

expected detriment. Each figure contains a frame for (a) all

Table 1 Parameters for five simulation scenarios with varying relationships of treatment effect heterogeneity across two outcomes

Parameters Scenarios

I II III IV V

aB10 0.25 0.25 0.25 0.25 0.25

aB11 - 0.25 - 0.25 - 0.25 - 0.25 - 0.25

dB0 0.25 0.25 0.25 0.25 0.25

dB10 0.25 0.25 0.25 0.25 0.25

dB11 - 0.25 - 0.25 - 0.25 - 0.25 - 0.25

aD10 0.05 0.10 0.35 0.05 0.05

aD11 0.10 0.20 - 0.35 0.10 0.10

dD0 0.35 0.35 0.35 0.35 0.35

dD10 0.05 0.10 0.35 0.10 0.35

dD11 0.10 0.20 - 0.35 0.20 - 0.35

VB 2000 2000 2000 2000 2000

VD 1800 1800 1800 1800 1800

VZ - 50 if Zi = 1;

50 if Zi = 0

- 50 if Zi = 1;

50 if Zi = 0

- 50 if Zi = 1;

50 if Zi = 0

- 50 if Zi = 1;

50 if Zi = 0

- 50 if Zi = 1;

50 if Zi = 0

Xi Uniform (0,1) Uniform (0,1) Uniform (0,1) Uniform (0,1) Uniform (0,1)

mi Normal (0,0.01) Normal (0,0.01) Normal (0,0.01) Normal (0,0.01) Normal (0,0.01)

Zi Bernoulli

P(Zi = 1) = 0.5

Bernoulli

P(Zi = 1) = 0.5

Bernoulli

P(Zi = 1) = 0.5

Bernoulli

P(Zi = 1) = 0.5

Bernoulli

P(Zi = 1) = 0.5
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simulated patients, (b) all simulated patients who chose

treatment, (c) all simulated patients who did not choose

treatment, and (d) the marginal simulated patients—those

whose treatment choice would have changed if their dis-

crete instrument value switched. The left and right vertical

axes are in terms of the true benefit treatment effect and

(TEBi) detriment treatment effect (TEDi) for each simulated

patient, respectively. Frame (b) in each figure shows sev-

eral patients with TEBi\TEDi who were treated, and frame

(c) shows several patients with TEBi[TEDi who were not

treated. This occurs because the net value of treatment

(NVi) also varies with the value associated with the

instrument (Zi) and the random error term (li). In addition,

in scenarios IV and V, NVi is calculated with expected

detriment treatment effects that do not match the true

effects.

Figures 1, 2, 3 contain scenarios in which treatment

effect expectations match the truth. In scenario I (Fig. 1b),

treated patients are more likely those with lower Xi values

and higher expected benefit treatment effects but are found

nearly across the range of the Xi axis. In contrast, in sce-

nario II (Fig. 2b), no treated patients have an

X value[0.65 and, in scenario III (Fig. 3b), treated

patients are found mostly at higher levels of Xi. With

respect to marginal patients, in scenario I (Fig. 1d), the

majority are distributed at levels of Xi between 0.25 and

0.75. In scenario II (Fig. 2d), the majority of marginal

patients are distributed at levels of Xi between 0.05 and

0.55. In scenario III, marginal patients are found across the

Xi distribution but mostly at higher levels of Xi. In sce-

narios IV (Fig. 4) and V (Fig. 5), treatment choice is based

on the treatment effect distribution found in scenario I so

Fig. 1 Negative relationship between benefit and detriment treatment

effects: Scatter plots containing the benefit probabilities and detriment

probabilities for subsets of the simulated population in scenario I.

a All simulated patients, b simulated patients who chose treatment T,

c simulated patients who chose the alternative treatment, d marginal

simulated patients, or those whose treatment choice would have

changed if their instrument value switched
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that the distributions Xi for the treated and marginal

patients in these scenarios match scenario I.

3.1 Variation in True Treatment Effect Parameters

Table 2 contains the true average treatment effects for both

the benefit and detriment in each simulation scenario and

the regression and IV parameter estimates for the treatment

effect on both the benefit and the detriment. All values in

Table 2 are averages over the 1000 simulations for each

scenario. The average treatment effect on the benefit in the

population (ATEB) is the same by design (0.125) across

scenarios. The average treatment effect on the detriment in

the population (ATED) varies across scenarios and was

lowest in scenario I. Despite a consistent distribution of

benefit treatment effects across scenarios, the true average

treatment effects on the benefit for the treated (ATTB),

untreated (ATUB), and marginal patients (LATEB) in

scenarios 1–3 varied significantly. In scenario II, true

ATTB, ATUB, and LATEB are all higher than in scenario

I. This occurs because ATED is higher in scenario II than

in scenario I and, like scenario I, benefit treatment effects

in scenario II are negatively correlated with detriment

treatment effects across patients. Higher expected benefits

from treatment are required for patients to choose treatment

in scenario II than scenario I, and fewer patients chose

treatment. In scenario III, ATED was also greater than the

ATED in scenario I, yet ATTB and LATEB were lower in

scenario III than in scenario I. These differences are

attributable to the positive correlation between benefit and

detriment treatment effects in scenario III. Few patients

with high probabilities of obtaining the benefit from

treatment in scenario III chose treatment because they also

had high detriment risk. In scenarios IV and V, the

Fig. 2 Negative relationship between benefit and detriment treatment

effects with detriment effects larger than scenario I: Scatter plots

containing the benefit probabilities and detriment probabilities for

subsets of the simulated population in scenario II. a All simulated

patients, b simulated patients who chose treatment T, c simulated

patients who chose the alternative treatment, d marginal simulated

patients, or those whose treatment choice would have changed if their

instrument value switched

Treatment Effect Heterogeneity for More Than One Outcome 387



expectations of benefit and detriment treatment effects used

to calculate NVi were identical to scenario I, so each

patient in scenarios IV and V made the same treatment

choices as in scenario I. The true values of ATTB, ATUB,

and LATEB match scenario I. However, the true values of

ATTD, ATUD, and LATED are considerably higher than

in scenario I because the true detriment treatment effects in

scenarios IV and V were higher than the detriment effect

expectations used to calculate NVi.

Correlations of expected treatment effects across out-

comes also affected the relationships among the treatment

effect parameters in each scenario. In scenarios I and II,

true ATTB[LATEB. Treated patients had a higher aver-

age treatment effect on the benefit than the patients whose

treatment choices were responsive to the instrument. This

result is universal under essential heterogeneity with

respect to a benefit if the treatment effects on benefit are

uncorrelated or negatively correlated with the treatment

effects on the detriment across patients. The set of treated

patients contains both marginal and non-marginal patients.

Under the conditions listed above, all non-marginal treated

patients will have benefit treatment effects greater than

those of the marginal patients. This can be seen by com-

paring Figs. 1b, d, as no treated patients with Xi values

between 0 and 0.1 are in the marginal group. Under the

same conditions, the opposite is true for detriments,

ATTD\LATED. Alternatively, if the treatment effects on

the benefit are positively correlated with the treatment

effects on the detriment across patients, it is possible for

true ATTB\LATEB, as shown in scenario III.

Evaluating the true LATEB and LATED parameters in

each scenario with the outcome valuation parameters VB

and VD in Table 1 provides insight into the treatment

allocation process within a population. In scenarios I–III,

Fig. 3 Positive relationship between benefit and detriment treatment

effects: Scatter plots containing the benefit probabilities and detriment

probabilities for subsets of the simulated population in scenario III.

a All simulated patients, b simulated patients who chose treatment T,

c simulated patients who chose the alternative treatment, d marginal

simulated patients, or those whose treatment choice would have

changed if their instrument value switched
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the average value of the expected benefit from treatment

for marginal patients approximately equalled the average

expected losses from treatment. For example, in scenario I,

the average value of the benefit gained by treatment for

marginal patients equalled (0.098 9 2000 = 196.0). The

average value of detriment lost by treatment for marginal

patients equalled (0.111 9 1800 = 199.8). If treatment

effect expectations match the truth, as in scenarios I–III,

this result is expected under essential heterogeneity. If

treatments are correctly sorted across patients, the marginal

patients would be those whose expected benefit and detri-

ment values from treatment are sufficiently similar that

their treatment choices are sensitive to their instrument

values. In contrast, in scenarios IV and V, treatment effect

expectations for the detriment were lower than the true

detriment treatment effects. In these scenarios, the true

average value of the loss associated with treatment for the

marginal patients was greater than the average value of the

benefit for these patients. These results are borne out when

evaluating the true LATE values for the marginal patients.

For example, in scenario V for marginal patients, the

average value of the true benefit gained by treatment

equalled (0.099 9 2000 = 198), whereas the average

value of the true detriment lost by treatment equalled

(0.221 9 1800 = 397.8). These results show that decision

dyads used incorrect information when making treatment

choices and that treatment was overused in scenario V.

Similar results can be found for scenario IV.

Fig. 4 Negative relationship between benefit and detriment treatment

effects and expected detriment effects as in scenario I and true

detriment effects as in scenario II: Scatter plots containing the benefit

probabilities and detriment probabilities for subsets of the simulated

population in scenario IV. a All simulated patients, b simulated

patients who chose treatment T, c simulated patients who chose the

alternative treatment, d marginal simulated patients, or those whose

treatment choice would have changed if their instrument value

switched
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3.2 Regression and Instrumental Variable

Treatment Effect Estimates

Comparisons of the treatment effect estimates in Table 2 to

the true underlying parameter values demonstrate that the

methodological findings that focused on a single outcome

of interest [8, 10, 22] generalize to clinical scenarios in

which a treatment has heterogeneous effects on more than

one outcome. Regression estimators yield estimates of the

ATT for each outcome, and IV estimators yield the average

treatment effect over the marginal patients—the LATE for

each outcome. In addition, the estimates in Table 2 show

the sensitivity of these estimates to the relationships of

expected treatment effects across outcomes in each popu-

lation. Despite the identical distribution of benefit treat-

ment effects across the simulated populations in scenarios

I–III, estimates of ATTB and LATEB varied substantially

across scenarios. Regression estimates and IV estimates

from scenario I provide unbiased estimates of ATTB,

ATTD, LATEB and LATED, respectively, for scenario I.

Yet, these estimates provide a poor representation of the

true values of these parameters in scenarios II and III.

3.3 Assessing Whether the Treatment Rate is

‘Right’ in a Study Population

The usefulness of estimates of ATTB, ATTD, LATEB and

LATED for policy making can be seen in scenarios IV and

V. When coupled with outcome valuations, estimates of

these parameters from each scenario can assess whether

treatment rate changes in a study population would be

advantageous. In scenario IV, the estimated value of the

treatment benefit for marginal patients

(2000 9 0.101 = 202) is substantially less than the

Fig. 5 Expected negative relationship between benefit and detriment

treatment effects in scenario I and but true positive relationship

between benefit and detriment treatment effects in scenario III: Lots

containing the benefit probabilities and detriment probabilities for

subsets of the simulated population in scenario IV. a All simulated

patients, b simulated patients who chose treatment T, c simulated

patients who chose the alternative treatment, d marginal simulated

patients, or those whose treatment choice would have changed if their

instrument value switched
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estimated treatment costs associated with the detriment

(1800 9 0.221 = 397.8). In addition, in scenario IV, esti-

mates of ATTB are greater than estimates of LATEB, and

estimates of ATTD are less than estimates of LATED. This

combination of estimates suggests that decision dyads were

unaware of the higher detriment costs associated with

treatment across this population. These estimates coupled

with outcome valuations could be used to develop policies

to lower treatment rates. These policies would be centred

on informing decision dyads about the higher detriment

risks associated with treatment for the patients in scenario

IV to shift expectations toward the true detriment treatment

effects. In scenario V, the value of the treatment benefit for

marginal patients (2000 9 0.100 = 200) is also substan-

tially less than the treatment costs associated with the

detriment (1800 9 0.1 = 244.8), also indicating treatment

overuse. However, in contrast to scenario IV, estimates of

ATTD are greater than estimates of ATTB, which suggests

a more complicated misalignment between expected and

true treatment effect distributions in this population. Poli-

cies would have to realign the expected relationships

between Xi and detriment risk across the decision dyads in

this population.

4 Discussion

Estimates from treatment effect studies using observational

data have often been interpreted in a ubiquitous manner

without discussions of context and addressing to whom the

estimates apply [45–48]. For example, a study reviewed 56

treatment effect studies using observational data that used a

functional relationship between treatment and outcome that

ensured treatment effect heterogeneity [49]. Each of these

studies used an IV estimator that yields average treatment

effect estimates for marginal patients. Under these cir-

cumstances, extra assumptions are required to properly

generalize IV estimates beyond the marginal patients. Yet,

few of these studies discussed any limits in their ability to

generalize estimates to either non-marginal patients within

their study population or to other populations. This prob-

lem also occurs when interpreting results from RCTs [50].

Researchers need to be more aware of the consequences

of treatment effect heterogeneity across outcomes when

interpreting and generalizing treatment effect estimates

using observational healthcare data. Previous method-

ological research that focused on making inferences about

a single outcome of interest laid the groundwork for this

stipulation. This prior research showed that regression

estimators yield the ATT, and IV estimators yield LATEs

Table 2 True benefit and detriment average values in each simulation scenario and regression and instrumental variable treatment effect

estimates

Parametersa Simulation scenarios

I II III IV V

Percent of patients treated 60.7 37.2 28.7 60.6 60.6

True benefit average treatment parameters

Average treatment effect in population 0.125 0.125 0.125 0.125 0.125

Average treatment effect on the treated 0.169 0.199 0.096 0.170 0.170

Average treatment effect on the untreated 0.056 0.081 0.137 0.056 0.056

Average treatment effect on marginal patients 0.098 0.157 0.108 0.099 0.099

True detriment average treatment parameters

Average treatment effect in population 0.100 0.200 0.175 0.200 0.175

Average treatment effect on the treated 0.071 0.127 0.085 0.154 0.226

Average treatment effect on the untreated 0.144 0.243 0.211 0.272 0.096

Average treatment effect on marginal patients 0.111 0.174 0.124 0.221 0.138

Estimates

Treatment effect on the benefit—regressionb 0.169 0.198 0.096 0.170 0.170

Treatment effect on the benefit—instrumental variablec 0.100 0.157 0.108 0.101 0.100

Treatment effect on the detriment—regressionb 0.071 0.126 0.085 0.153 0.226

Treatment effect on the detriment—instrumental variablec 0.110 0.171 0.124 0.221 0.136

Instrumental variable first-stage F-statistic 115.7 74.1 738.0 115.1 114.9

aAverages over 1000 simulations
bLinear probability model
cLinear two-stage least squares
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for the outcome of interest [9, 13–15, 17]. Proper gener-

alization of estimates of ATT or LATE for the outcome of

interest to the untreated patients in a study population

requires the assumption that treatments were not chosen

based on expected treatment benefit, i.e. no ‘sorting on the

gain’ or essential heterogeneity [18, 51]. It has also been

shown that different IVs affect the treatment choices of a

different subset of patients in the same study, producing

different but valid estimates of LATE [18–21]. Other

studies have shown that treatment effect estimates can vary

across study populations with factors affecting outcome

valuations [22, 23].

This study expanded on this earlier work to assess the

implications on treatment effect estimates when treatments

have heterogeneous effects on more than one outcome. We

use simulation modelling to assess an expanded version of

essential heterogeneity, which we coin as ‘sorting on the

mix’. Decision dyads make treatment choices considering

the effects of treatment on more than one outcome with

treatment effects that vary across patients. Our simulation

models showed that, under such conditions, the interpre-

tation of estimates when using regression and IV estimators

remains consistent for each outcome. Regression estima-

tors yield ATT, and IV estimators yield LATE, for each

outcome. Estimates of ATT and LATE across outcomes

can be used to help address whether a treatment has been

under or overused in the given study population. However,

we also showed that the true values of ATT and LATE for

each outcome are sensitive to the relationships in treatment

effects across outcomes in each study population. There-

fore, researchers and policy makers should be very cautious

about assuming that estimates of ATT and LATE from a

single study population can be generalized to other popu-

lations of patients. External validity must be based on

arguments that the relationships of treatment effect distri-

butions across outcomes are consistent across populations.

5 Conclusions

Analysis of observational data has been suggested as an

approach to finding treatment effect estimates across

patient circumstances and across outcomes. Observed

treatments found in these databases are not the result of

randomization but rather of choice. Real-world treatment

choices often involve complex assessments of the expected

effects of treatments across outcomes. This study demon-

strates that failing to consider this complexity when inter-

preting treatment effect estimates using observational data

could lead to clinical and policy mistakes. If treatment

choices reflect expected effects over more than one out-

come, our simulation results showed that treatment effect

estimates can provide evidence as to whether treatments

were over or underused in the study population. We also

showed that these estimates are very sensitive to the dis-

tributions of treatment effects across outcomes in each

study population. As a result, researchers and policy

makers should be extremely cautious of generalizing esti-

mates from a single study population to other patient

populations.
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