Health Research Alliance
Browse
FEDSM2020-10212.pdf (1.1 MB)
Download file

DIVERSION OF PULSATILE FLOW OVER A RECTANGULAR SIDEWALL CAVITY USING SUPERHYDROPHOBIC MESH

Download (1.1 MB)
conference contribution
posted on 2023-01-13, 16:57 authored by benjiamin eichholz, Ruihang Zhang, Yan ZhangYan Zhang

 Pulsatile flow over open cavity represents one type of physiological phenomenon related to a few common cardiovascular diseases, such as cerebral sidewall aneurysm and arrhythmia-induced thromboembolism in the left atrium appendage (LAA). In recent years, endovascular treatments using mesh-based implants have become increasingly popular. In this paper, we study the characteristics of pulsatile flow over a simplified sidewall cavity under two Reynolds/Womersley number conditions using Particle Image Velocimetry. The impacts of a regular mesh and a superhydrobobically-coated mesh on the cavity flow are investigated. Our results quantify the phase-to-phase changes of the flow fields and reveal the formation and the transport of the primary vortex over the ostium of the rectangular cavity. Results suggest the meshes diverted the main flow away from the cavity and prohibited the development of the primary vortex. A penetrated jet flow was formed near the front side of the cavity due to the presence of the mesh. The superhydrophobic mesh dramatically reduced the kinetic energy of the penetrated jet into the cavity. It indicates the mesh flow diversion is effective because of the destruction of the shearinduced vortex dynamics that causes flow stagnation on the rear cavity wall. Our results also indicate the superhydrophobic coating is potentially beneficial in terms of reducing the hemodynamic loading inside the cavity. 

History

Grant ID

19AIREA34470008

Usage metrics

    American Heart Association

    Licence

    Exports