Health Research Alliance
Browse
Jinhu Wang_paper 2017.pdf (5.54 MB)

Jinhu Wang_paper 2017.pdf

Download (5.54 MB)
journal contribution
posted on 2019-03-08, 14:58 authored by Jinhu Wang, Jingli Cao, Kenneth D. Poss

Mechanisms that control cell cycle dynamics during tissue regeneration require elucidation. Here we find in zebrafish that regeneration of the epicardium, the mesothelial covering of the heart, is mediated by two phenotypically distinct epicardial cell subpopulations. These include a front of large, multinucleate leader cells, trailed by follower cells that divide to produce small, mononucleate daughters. By live imaging of cell cycle dynamics, we show that leader cells form by spatiotemporally regulated endoreplication, caused primarily by cytokinesis failure. Leader cells display greater velocities and mechanical tension within the epicardial tissue sheet, and experimentally induced tension anisotropy stimulates ectopic endoreplication. Unbalancing epicardial cell cycle dynamics with chemical modulators indicated autonomous regenerative capacity in both leader and follower cells, with leaders displaying an enhanced capacity for surface coverage. Our findings provide evidence that mechanical tension can regulate cell cycle dynamics in regenerating tissue, stratifying the source cell features to improve repair.

History

Grant ID

15SDG25710444

Usage metrics

    American Heart Association

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC